题目链接:http://poj.org/problem?id=2186
借鉴了一位大佬的思路:https://blog.csdn.net/u013480600/article/details/32107733
题意:给你一个有向图,现在问你图中有多少个顶点满足下面要求:任何其他的点都有路可以走到该顶点. 输出满足要求顶点的数目.
分析:
先我们把图的各个强连通分量算出来,对于分量A,如果A中的点a是那个图中所有点都可以到达的点,那么A中的其他所有点也都符合要求.
所以我们只需要把每个分量缩成一点,得到一个DAG有向无环图.然后看该DAG中的哪个点是所有其他点都可以到达的即可.那么该点代表的分量中的节点数就是所求答案.
如果DAG中出度为0的点仅有一个,那个出度为0的点代表的分量就是我们所找的分量.否则输出0.(这个结论需要自己仔细验证体会)
可不可能DAG中有两个点(分量)是满足要求的? (即分量中的所有点都是其他点可到达的)不可能,因为这两个分量如果互相可达,就会合并成一个分量.会不会出现就算出度为0的点只有一个,但是DAG中的其他点到不了该出度为0的点,那么也应该输出0呢?如果DAG其他的点到不了出度为0的点,那么其他点必然还存在一个出度为0的点.矛盾.
代码如下:
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
#include <stdlib.h>
#include <vector>
#include <map>
#include <stack>
#include <queue>
using namespace std;
const int maxn =10000+10;
int n,m;
int pre[maxn],low[maxn],sccno[maxn],dfs_clock,scc_cnt,w[maxn],outdeg[maxn];
stack<int>S;
vector<int>G[maxn];
void dfs(int u)
{
pre[u] = low[u] =++dfs_clock;
S.push(u);
for(int i = 0; i<G[u].size(); i++)
{
int v = G[u][i];
if(!pre[v])
{
dfs(v);
low[u] = min(low[u],low[v]);
}
else if(!sccno[v])
{
low[u] = min(low[u],pre[v]);
}
}
if(low[u]==pre[u])
{
scc_cnt++;
int cnt =0;
for(; ;)
{
cnt++;
int x = S.top();
S.pop();
sccno[x] = scc_cnt;
if(x==u)
break;
}
w[scc_cnt]=cnt;
}
}
void find_scc()
{
dfs_clock = scc_cnt =0;
memset(sccno,0,sizeof(sccno));
memset(outdeg,0,sizeof(outdeg));//出度
memset(w,0,sizeof(w));//每一个缩点有多少个点
memset(pre,0,sizeof(pre));
for(int i=0; i<n; i++)
if(!pre[i])
dfs(i);
}
void build()
{
for(int u=0; u<n; u++)
{
for(int i=0; i<G[u].size(); i++)
{
int v=G[u][i];
if(sccno[u]!=sccno[v])
{
outdeg[sccno[u]]++;
}
}
}
}
int main()
{
while(scanf("%d %d",&n,&m)!=EOF)
{
int ans=0;
for(int i=0; i<n; i++)
G[i].clear();
int u,v;
for(int i=0; i<m; i++)
{
scanf("%d %d",&u,&v);
u--,v--;
G[u].push_back(v);
}
find_scc();//缩点
if(scc_cnt==1)
{
printf("%d\n",n);
continue;
}
build();//建图
int sum=0;
for(int i=1; i<=scc_cnt; i++)
{
if(outdeg[i]==0)
{
sum++;
ans+=w[i];
}
}
if(sum!=1)
{
ans=0;
}
printf("%d\n",ans);
}
return 0;
}