43.乐理基础-拍号-常见的拍号与强弱关系

首先拍号的定义:39.认识音符40.什么是一拍41.小节、小节线、终止线42.看懂拍号的意义

通过 39.认识音符40.什么是一拍41.小节、小节线、终止线42.看懂拍号的意义 应该可以知道 Y的取值只能是2、4、8、16、32、64。。。。因为Y指的是Y分音符,而音符只有二分音符、四分音符、八分音符等,而不存在三分音符、五分音符这些,所以Y的取值只能是2的n次方(n>0),然后X的取值范围,X意味着每小节有X拍,那其实随便每小节有多少拍都是可以的,每小节可以是1拍、2拍、3拍等等,每小节有10000拍理论上都是可以的,所有X的取值范围是全体正整数,根据X、Y取值来说拍号理论上是无穷无尽的,是无限的,实际上乐谱中用到的拍号,如下图,下图中的内容只需要看看了解了解就可以,以后乐谱看多了就懂了

然后理论上拍号是无穷无尽的但是为什么常用的就上图中那几个?这涉及到强弱关系,首先拍号预示着音乐的律动,律动在不从学术性角度详细性解释,在当前的语境中,只需要把不同的律动理解为不同的强弱关系就可以了,不同的律动、不同的强弱关系,比如 动次动次动次动次。。。这个律动就是动次的重复,再比如 动次次动次次动次次。。。这个律动就是动次次的重复,再比如 动次打次动次打次动次打次。。。这个律动就是动次打次的重复,这很明显是三种不同的律动,那拍号是如何去暗示各种不同的律动的是接下来要写的重点。

拍号中的强弱关系:现阶段要基础下面的东西

1.无论什么拍号,每小节的第一拍都是 强拍 并且强拍在每一个小节都只有这一个强拍,如图1哪里的知识点

2.所谓强拍、弱拍这些词,并不是说在强拍的位置音乐就一定非常强,非常响,在弱拍的位置音乐就一定非常弱、非常轻柔

下方是关于第二点(所谓强拍、弱拍这些词,并不是说在强拍的位置音乐就一定非常强,非常响,在弱拍的位置音乐就一定非常弱、非常轻柔这句话)的说明:

强拍、弱拍这些词是一种理论上对于每小节第几拍的一种位置或者性质上的形容,并不一定就在那个位置上就要很强或很弱。比如足球比赛里的右边锋,它只是叫右边锋并不是只能在右边它也是可以全图跑的,只是一种让足球小白更容易理解这名球员所扮演的主要角色,强拍弱拍也是这么个道理,强拍弱拍它们更多地是用来形容位置,让音乐小白能够快速的理解拍号预示的含义,而并非每小节第一拍的强拍就一定很强,声音就一定要响亮,并非弱拍就一定很弱,声音一定要轻微,如图2的简谱,既然强拍弱拍不能直观的通过声音强弱体现出来那不同的拍号还有什么不同的点呢?这个问题看图3

总结:

第一无论什么拍号,每小节的第一拍都是 强拍 并且强拍在每一个小节都只有这一个强拍,所以就会诞生不同的拍号比如四二拍是强弱强弱强弱强弱。。。四三拍是强弱弱强弱弱强弱弱。。。等等

第二关于强拍、弱拍这些词,它们更多的意义,是理论上用来形容每小节的这些拍数的 位置 或者 性质,并不是实际的音乐中强拍一定声音响,弱拍一定声音弱,实际音乐中强拍可能比较弱,弱拍也可能比较强。

图1:以4分音符为一拍每小节2拍来说,再根据 无论什么拍号,每小节的第一拍都是 强拍,并且每小节只有这一个强拍,然后可以根据下图看到四二拍的音乐中,它拍与拍的 强弱关系 就是现在这样子(强弱 强弱 强弱。。。这样一直重复),就是动次动次动次的这种律动感

然后再看四三拍,以四分音符为一拍,每小节有三拍,再根据 无论什么拍号,每小节的第一拍都是 强拍,并且每小节只有这一个强拍,红色是强拍,蓝色是弱拍,也就是动次次动次次动次次。。。这种律动,到这就应该明白,不同的拍号,预示着不同的 律动,或者说不同的拍号,预示着不同的 强弱关系,每一次强弱关系的重复都是依靠 小节线 来提示的,小节线之后就是新的小节,每个小节的第一拍都是 强拍,所以也可以说成 小节线后的第一拍都是 强拍。

图2:如果一定要按照 强拍一定很强,弱拍一定很弱的唱法就很怪

图3:如果只是看到简谱的话不需要知道强弱关系,但如果要搞创作的话是需要知道强弱关系的如下图中的文字描述,下图中的内容现在只需要看看,它属于更加进阶一些的和创作有点关系的东西,现在是不可能懂的,现在只需要知道至少因为这些原因和要点,所以必须要有不同的拍号,这些要点到了可以创作的这一步自然就会明白

内容概要:本文将金属腐蚀现象比作游戏角色受到持续伤害(debuff),并采用浓度迁移和损伤方程来建模这一过程。文中首先介绍了浓度迁移的概念,将其比喻为游戏中使角色持续掉血的毒雾效果,并展示了如何利用Numpy矩阵存储浓度场以及通过卷积操作实现浓度扩散。接着引入了损伤方程,用于评估材料随时间累积的损伤程度,同时考虑到材料自身的抗性特性。作者还提供了完整的Python代码示例,演示了如何在一个二维网格环境中模拟24小时内金属表面发生的腐蚀变化,最终得到类似珊瑚状分形结构的腐蚀形态。此外,文章提到可以通过调整模型参数如腐蚀速率、材料抗性等,使得模拟更加贴近实际情况。 适合人群:对材料科学、物理化学感兴趣的科研工作者和技术爱好者,尤其是那些希望通过编程手段深入理解金属腐蚀机制的人群。 使用场景及目标:适用于希望借助数值模拟方法研究金属腐蚀行为的研究人员;可用于教学目的,帮助学生更好地掌握相关理论知识;也可作为工程项目前期评估工具,预测不同条件下金属构件可能遭受的腐蚀损害。 阅读建议:由于文中涉及较多数学公式和编程细节,建议读者具备一定的Python编程基础以及对线性代数有一定了解。对于想要进一步探索该领域的学者来说,可以尝试修改现有代码中的参数设置或者扩展模型维度,从而获得更丰富的研究成果。
基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目),个人经导师指导并认可通过的高分设计项目,评审分98分,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!主要针对计算机相关专业的正在做大作业、毕业设计的学生和需要项目实战练习的学习者,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值