torch.
max
(input) → Tensor
返回输入tensor中所有元素的最大值
-
a = torch.randn(
1,
3)
-
>>
0.4729
-0.2266
-0.2085
-
-
torch.max(a)
-
>>
0.4729
torch.
max
(input, dim, keepdim=False, out=None) -> (Tensor, LongTensor)
按维度dim 返回最大值
torch.max)(a,0) 返回每一列中最大值的那个元素,且返回索引(返回最大元素在这一列的行索引)
-
a = torch.randn(
3,
3)
-
>>
-
0.2252
-0.0901
0.5663
-
-0.4694
0.8073
1.3596
-
0.1073
-0.7757
-0.8649
-
-
torch.max(a,
0)
-
>>
-
(
-
0.2252
-
0.8073
-
1.3596
-
[torch.FloatTensor of size
3]
-
,
-
0
-
1
-
1
-
[torch.LongTensor of size
3]
-
)
torch.max(a,1) 返回每一行中最大值的那个元素,且返回其索引(返回最大元素在这一行的列索引)
-
a = torch.randn(
3,
3)
-
>>
-
0.2252
-0.0901
0.5663
-
-0.4694
0.8073
1.3596
-
0.1073
-0.7757
-0.8649
-
-
torch.max(a,
1)
-
>>
-
(
-
0.5663
-
1.3596
-
0.1073
-
[torch.FloatTensor of size
3]
-
,
-
2
-
2
-
0
-
[torch.LongTensor of size
3]
-
)
torch.max()[0], 只返回最大值的每个数
troch.max()[1], 只返回最大值的每个索引
torch.max()[1].data 只返回variable中的数据部分(去掉Variable containing:)
torch.max()[1].data.numpy() 把数据转化成numpy ndarry
torch.max()[1].data.numpy().squeeze() 把数据条目中维度为1 的删除掉
torch.max(tensor1,tensor2) element-wise 比较tensor1 和tensor2 中的元素,返回较大的那个值