torch.max

torch.max(input) → Tensor

返回输入tensor中所有元素的最大值


 
 
  1. a = torch.randn( 1, 3)
  2. >> 0.4729 -0.2266 -0.2085
  3. torch.max(a)
  4. >> 0.4729

 

 

torch.max(inputdimkeepdim=Falseout=None) -> (TensorLongTensor)

按维度dim 返回最大值

torch.max)(a,0) 返回每一列中最大值的那个元素,且返回索引(返回最大元素在这一列的行索引


 
 
  1. a = torch.randn( 3, 3)
  2. >>
  3. 0.2252 -0.0901 0.5663
  4. -0.4694 0.8073 1.3596
  5. 0.1073 -0.7757 -0.8649
  6. torch.max(a, 0)
  7. >>
  8. (
  9. 0.2252
  10. 0.8073
  11. 1.3596
  12. [torch.FloatTensor of size 3]
  13. ,
  14. 0
  15. 1
  16. 1
  17. [torch.LongTensor of size 3]
  18. )

torch.max(a,1) 返回每一行中最大值的那个元素,且返回其索引(返回最大元素在这一行的列索引)


 
 
  1. a = torch.randn( 3, 3)
  2. >>
  3. 0.2252 -0.0901 0.5663
  4. -0.4694 0.8073 1.3596
  5. 0.1073 -0.7757 -0.8649
  6. torch.max(a, 1)
  7. >>
  8. (
  9. 0.5663
  10. 1.3596
  11. 0.1073
  12. [torch.FloatTensor of size 3]
  13. ,
  14. 2
  15. 2
  16. 0
  17. [torch.LongTensor of size 3]
  18. )

torch.max()[0], 只返回最大值的每个数

troch.max()[1], 只返回最大值的每个索引

torch.max()[1].data 只返回variable中的数据部分(去掉Variable containing:)

torch.max()[1].data.numpy() 把数据转化成numpy ndarry

torch.max()[1].data.numpy().squeeze() 把数据条目中维度为1 的删除掉

torch.max(tensor1,tensor2) element-wise 比较tensor1 和tensor2 中的元素,返回较大的那个值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值