矩阵特征值与行列式、迹的关系

矩阵特征值与行列式、迹的关系


from: http://www.cnblogs.com/AndyJee/p/3737592.html

矩阵的特征值之积等于矩阵的行列式

矩阵的特征值之和等于矩阵的迹

image

简单的理解证明如下:

1、二次方程的韦达定理:

请思考:x^2+bx+c=0 这个方程的所有根的和等于多少、所有根的积等于多少



2、把二次方程推广到 N 次:

对一个一元n次方程,它的根记作

那么接下来可以类似地来思考:(x-x1)(x-x2)(x-x3)...(x-n_N)=0 这个方程的所有根的和对应于等式左边展开后几次项的系数,所有根的积对应等式展开后几次项的系数。

说明:

已知一个一元五次方程:

根据高斯的代数原理:上式在复数范围内必可分解成的形式;且x1, x2, x3, x4, x5是该多项式在复数范围内的根。

 

3、考虑矩阵的特征值问题

  • 设A为n阶方阵,考虑特征多项式|A-λI|的n-1次项,有矩阵 A 的特征值方程:det(A-λI)=0(行列式展开式在这里不作说明,可以参考相关资料),我们可以发现,除了主对角元的乘积 (λ-a11)(λ-a22)...(λ-ann) 之外,其他展开项的次数都小于 n-1。因此 n-1 次项的系数就是 (λ-a11)(λ-a22)...(λ-ann) 中 λ^(n-1) 的系数,也就是-(a11+a22+...+ann)。
    特征值是特征多项式的根,由韦达定理(根与系数关系)知特征值的和 = a11+a22+...+ann。


4、参考文献:

http://www.zhihu.com/question/20533117

http://baike.baidu.com/view/1166.htm?fr=aladdin

<think>好的,我现在需要处理用户关于特征值行列式之间数学关系及计算方法的问题。首先,我得确认用户的需求是什么。他们可能是在学习线性代数,想理解这两个概念之间的联系,以及如何具体计算。用户的问题提到“数学关系及计算方法”,所以需要涵盖两者的关系,还有具体的计算步骤。 首先,我得回顾特征值行列式的定义。特征值是线性代数中矩阵的重要属性,矩阵行列式有直接关系行列式是一个标量值,由矩阵所有元素计算得出,而特征值则是满足Ax = λx的λ值,其中A是矩阵,x是非零向量。 接下来,特征方程是关键。特征方程是det(A - λI) = 0,这里的行列式直接关联到特征值的求解。行列式在这里的作用是作为多项式方程,其根就是特征值。因此,行列式的展开结果就是特征多项式,解这个多项式方程就能得到特征值。 然后,特征值的乘积行列式关系。根据代数基本定理,n次多项式有n个根(包括重根),这些根的乘积等于行列式的值乘以(-1)^n。而矩阵行列式等于所有特征值的乘积。这一点需要明确说明,可能用户会混淆符号问题,所以需要解释清楚。 计算方法部分,用户可能需要具体的步骤。比如如何构造特征方程,如何计算行列式,然后解方程找特征值。同时,行列式的计算可以通过展开或利用性质简化,这部分可能需要分步说明,比如对2x2和3x2矩阵的例子,或者使用行变换等方法。 另外,用户可能对实际计算中的注意事项感兴趣,比如如何处理复数根,或者当矩阵不可对角化时的情况。但根据问题,重点还是应该在基本关系和方法上,所以可能不需要深入这些复杂情况。 需要整合网络搜索结果,确保信息的准确性。比如,确认特征值的乘积确实等于行列式,以及特征方程的构造是否正确。可能还需要查找一些具体的计算例子,比如2x2矩阵的例子,来帮助用户理解。 在组织回答时,按照用户的要求,分成多个方法或步骤,每个步骤间换行,避免使用第一人称和步骤词汇。例如,可以分为数学关系部分和计算方法部分,每个部分下再分点说明。 关于格式,如果有数学公式,要正确使用$和$$符号。比如,特征方程应该写成det(A - λI) = 0,变量和符号都要包裹在公式标记中。代码部分如果有的话,比如计算行列式的Python代码,需要用三个反引号包裹,并注明语言类型。 最后,生成相关问题时要基于原问题和回答内容。可能的问题包括特征值的和关系,数值计算方法,以及特征值分解的应用等。需要确保每个问题都原问题相关,并且有逻辑联系。 现在需要检查是否所有要求都被满足:整合搜索内容,分步骤,正确格式,相关问题部分。确保没有第一人称,步骤词汇,引用分散,每个部分换行,代码和公式格式正确。最后的相关问题要符合格式,用正确的标题,三个问题,编号正确。</think>特征值行列式的数学关系及计算方法可通过以下要点说明: **一、数学关系** 1. 矩阵 $A$ 的特征值 $\lambda$ 满足特征方程 $det(A - \lambda I) = 0$,其中行列式计算结果构成特征多项式 2. 所有特征值的乘积等于矩阵行列式的值:$\prod_{i=1}^n \lambda_i = det(A)$ 3. 特征值的和等于矩阵(trace):$\sum_{i=1}^n \lambda_i = tr(A)$ **二、计算方法** **特征值计算流程** 构造特征方程 $det(A - \lambda I)=0$ 展开行列式计算特征多项式 求解多项式方程的根 **行列式计算示例(3×3矩阵)** 给定矩阵: $$ A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} $$ 行列式计算式为: $$det(A) = a(ei - fh) - b(di - fg) + c(dh - eg)$$ **代码实现(Python)** ```python import numpy as np # 定义矩阵 A = np.array([[2, 1], [1, 3]]) # 计算特征值 eigenvalues = np.linalg.eigvals(A) # 计算行列式 det = np.linalg.det(A) print(f"特征值: {eigenvalues}") print(f"行列式: {det}") ``` **三、特殊情形处理** 对角矩阵行列式等于对角线元素乘积 上/下三角矩阵行列式等于对角线元素乘积 奇异矩阵行列式为零)至少包含一个零特征值
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值