Stable diffusion(一)

本文介绍了Stablediffusion中的技术,包括固定正向扩散过程、生成式反向去噪过程,以及VAE用于图片压缩的潜在空间。Unet在此中用于噪声预测和图像去噪,通过加入随机噪声生成多样训练样本。同时提及了CLIP的Tokenizer和TextEncodeSampler在训练中的作用,以及图像分割的不同分类和Unet在实际应用中的具体操作。
摘要由CSDN通过智能技术生成

Stable diffusion 原理解读

名词解释
  • 正向扩散(Fixed Forward Diffusion Process):
  • 反向扩散(Generative Reverse Denoising Process)
    在这里插入图片描述
  • VAE(Variational AutoEncoder):一个用于压缩图片的神经网络,按照我的理解,通过这个模组的图片/文本,将被映射更加精确的向量。
  • Latent Space(潜变量空间):被VAE压缩/升维后的向量。
  • Unet:一个用来预测噪声的图像分割模型
  • CLIP:Tokenizer + Text Encode
  • Sampler:控制迭代次数和迭代总数的规划期。可以有线性规划等规划方式,去分配,在训练中,每一个epoch中加入多少次噪音。
    • 迭代次数:epoch
    • 迭代总数:要加多少次噪音。
Unet原理分析
  1. 图像分割的几种分类。图像分割,就是将像素点达标成thing的过程。
    在这里插入图片描述
  2. 网络结构
    网络结构就是卷积下采样 + 反卷积/反池化 上采样的过程
    在这里插入图片描述
  3. 训练集样例
    在这里插入图片描述
  4. Unet 在stable diffusion中的使用。Unet是用于图像分割的,用于预测像素的分类。在stable diffusion中,就使用它预测噪声,去除噪声。
    1. 在一张图像中,加入随机生成噪声,并且将这张图片和这个噪声分类放到训练集中去。那么就可以通过一张图片,获得有很多图片的训练集。
      在这里插入图片描述
    2. 训练Unet,将图片中的噪音点打标出来。输入图片,输出噪音。并且将噪音去除,就能从一个噪音图片中还原出一个图像~
图生图/文生图
  1. 将图片压缩成潜在变量/在潜在空间中latent space中随机生成一个噪音图片
  2. 加入随机噪声/文生图略
  3. Unet 预测噪声、去噪
  4. 生成新的图片
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值