卷积神经网络学习笔记(二)基本概念

*解决问题的方式:1参数共享(图像处理中与物体位置无关)
2局部连接(降低参数数量)

输出size=输入size-卷积核size+1

滑动步长的概念

卷积多通道:多个卷积核,提取不同特征

激活函数:Relu激活

卷积:
P=边距padding
S=步长(stride)
输出尺寸=(n-p)/s+1
参数数目=输入通道数输出通道数卷积核长*宽

池化:
最大化池化&平均值池化
用于减小图像尺寸,减少计算量
解决平移鲁棒性

全连接层:
全连接层之后就不能池化,所以一般放在最后

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值