基于双流卷积与小波变换(DWT)的人脑纹识别
在当前数字信息社会中,个人身份验证技术是许多个人和企业安全系统中必不可少的工具。生物特征识别作为一种个人身份验证技术,使用生物测量,包括物理、生理或行为特征。而脑纹识别技术作为新兴的生物特征识别技术,在不可窃取、不可伪造、不易受损、必须活体检测等方面具有独特的优势,被称为最安全的下一代密码。
然而,目前脑纹识别技术的发展仍处于探索阶段,存在着数据样本量小、测试时段单一、记录范式单一等一系列局限性。为了推动这一领域的发展,旨在提高脑纹识别系统的准确性、稳定性和通用性。
数据可视化
人脑产生的特定脑电波波形,被称为“脑纹”,不同个体在观看特定图片时,大脑会产生有针对性的脑电波反应,这种反应是独一无二的,每个人都不尽相同。记录这些个人特有的脑电波信号,可以构建“脑纹”比对数据库。当需要进行身份认证时,只要再次浏览特定图片,就可以通过采集的“脑纹”信息与数据库进行比对,快速得出待识别个体的身份信息,准确率高达100%。
卷积搭建
使用了一种双分支网络,首先将脑纹信号进行离散小波变换,将脑纹信号拆解为两个函数,分别入对应的网络通路,网络整体设计思想参考了双线性卷积神经网络的结构。对于脑纹识别问题采取了分而治之的思想。
离散小波变换
离散小波变换能够在不同尺度上对信号进行分解,对不同尺度的选择可以根据不同的目标来确定。原始信号通过两个相互滤波器产生两个信号,分别表示信号的高尺度(低频信息)和信号的高尺度(高频信息)。
网络搭建与可视化
在模型中,使用了双分支卷积神经网络结构,首先对脑纹信号进行离散小波变换,然后分别送入两个分支网络进行特征提取,最后将两个分支的特征进行合并,经过全连接层得出最终结果。
模型配置与训练
在模型配置中,采用了Adam优化器和Cosine学习率调度器,结合了线性warmup和余弦退火学习率调度策略。模型在训练过程中,根据验证集的表现进行模型参数的保存,以便后续的预测任务。
模型预测与结果
最后,利用训练好的模型对测试集进行预测,并生成文件,预测结果表明模型的性能良好,对于脑纹识别具有较高的准确性和稳定性。
服务
🛠 博主提供一站式解决方案,让您的工作变得更加轻松、高效!以下是我们提供的服务:
-
代部署
🚀 为您提供快速、稳定的部署方案。无论是您的应用程序、网站还是其他软件项目,我们都可以帮助您将其部署到适当的平台上。
-
课程设计选题
📚 为您量身定制符合课程要求和学生需求的选题方案。无论是基础课程还是高级课程,我们都能够为您提供专业的建议和支持。
-
线上辅导
💻 提供线上辅导服务,为您提供个性化的指导和支持,帮助您解决在学习、工作或研究中遇到的各种问题和困难。
如有需求,请随时私信