基于双流卷积与小波变换(DWT)的人脑纹识别
在当前数字信息社会中,个人身份验证技术是许多个人和企业安全系统中必不可少的工具。生物特征识别作为一种个人身份验证技术,使用生物测量,包括物理、生理或行为特征。而脑纹识别技术作为新兴的生物特征识别技术,在不可窃取、不可伪造、不易受损、必须活体检测等方面具有独特的优势,被称为最安全的下一代密码。
然而,目前脑纹识别技术的发展仍处于探索阶段,存在着数据样本量小、测试时段单一、记录范式单一等一系列局限性。为了推动这一领域的发展,旨在提高脑纹识别系统的准确性、稳定性和通用性。
数据可视化
人脑产生的特定脑电波波形,被称为“脑纹”,不同个体在观看特定图片时,大脑会产生有针对性的脑电波反应,这种反应是独一无二的,每个人都不尽相同。记录这些个人特有的脑电波信号,可以构建“脑纹”比对数据库。当需要进行身份认证时,只要再次浏览特定图片,就可以通过采集的“脑纹”信息与数据库进行比对,快速得出待识别个体的身份信息,准确率高达100%。
卷积搭建
使用了一种双分支网络,首先将脑纹信号进行离散小波变换,将脑纹信号拆解为两个函数,分别入对应的网络通路,网络整体设计思想参考了双线性卷积神经网络的结构。对于脑纹识别问题采取了分而治之的思想。
离散小波变换
离散小波变换能够在不同尺度上对信号进