基于Python实现电商订单的数据分析

本文介绍了使用Python对全球超市4年电商销售数据进行深度分析,包括年度销售趋势、地区分布、用户行为和RFM分类。通过MySQL存储数据,Flask搭建可视化平台,并利用Echarts展示结果,同时探讨了LSTM和Transformer在月订单销售额预测中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于Python实现电商订单的数据分析

数据集:

项目使用一家全球超市4年内的电商销售订单数据,数据集名为superstore_dataset2011-2015.csv。数据集共有51290条数据,包含订单ID、订单日期、发货日期、运输模式、客户ID、客户名称、国家、城市、产品ID、类别、子类别、产品名称、销售额、数量、折扣、利润等信息。该数据集旨在帮助超市进行“人、货、场”分析,提升销量。
在这里插入图片描述

技术:

Python:用于数据处理、分析和模型开发。
MySQL:用于数据持久化存储。
Flask:用于搭建可视化平台的 Web 应用。
Echarts:用于数据可视化。

功能:

项目利用Python数据分析技术,从年度销售维度、地区销售维度和用户分类维度进行了分析。分析结果存储在MySQL数据库中,并通过Flask搭建的可视化平台展示,利用Echarts进行数据可视化。

创新点:

在对数据进行分析可视化的基础上,加入了RFM用户分类。

明确需求和目的:

  • 对整体运营情况进行分析,包括销售额、销量、利润、客单价、市场布局等。
  • 对商品结构、优势/爆款商品、劣势/待优化商品进行分析。
  • 对客户数量、新老客户、RFM模型、复购率、回购率等用户行为进行分析。
  • 添加了LSTM和Transformer的月订单回归预测销售额。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

OverlordDuke

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值