语音分离任务中后处理模块探索

本文探讨了在人声音乐分离任务中,后处理模块的设计与应用。通过对模型输出的vocal mask分析,提出一种通过深度学习生成Mmask的策略,旨在抑制伴奏并减少误抑制。实验包括手动特征提取、VAD检测和深度学习模型,其中深度学习方法有望在大数据集和强泛化能力下展现出优势。
摘要由CSDN通过智能技术生成

后处理模块目标:用于人声音乐分离的场景

增加这个模块的初衷是:尽可能抑制空白vocal部分的残留,只后处理vocal,不处理伴奏

1.例:

在这里插入图片描述
可以看到vocal本身是空白的地方,模型并没有完全输出空白

2.也有paper里边提到对空白部分vocal的抑制效果,不过它使用MHE(MINIMUM HYPERSPHERICAL ENERGY),相当于是在loss上加了一个regularization,并不是后处理:

在这里插入图片描述

其实抑制的并不是特别明显:

在这里插入图片描述

图片来自:[1]. IMPROVING SINGING VOICE SEPARATION WITH THEWAVE-U-NET USING MINIMUM HYPERSPHERICAL ENERGY Joaquin Perez-Lapillo, Oleksandr Galkin, Tillman Weyde Department of Computer Science City, University of London {joaquin.perez-lapillo,oleksandr.galkin,t.e.weyde}@city.ac.uk.

后处理方法可行性探索

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值