基于深层声学特征的端到端语音分离

这是发表在计算机系统应用的2019的期刊

概述

传统的声学提取特征方法需要经过傅里叶变换等操作,这会造成语音能量损失和时间上的延时,为了改善问题,提出了端到端。

文章结构

这篇文章的写作思路很值得借鉴,尤其用了大量对比,有助于论文的构想。

首先给出了语音分离的概念:指多个说话人的混合语音中分离得到想要的语音数据,源于著名的鸡尾酒会问题。本文主要研究两个说话人混合的情况。

 鸡尾酒会问题:指人的一种听力选择能力,注意力集中在某个人的谈话之中而忽略背景中其他的对话或噪音,揭示了人类听觉系统中令人惊奇的能力,即我们可以在噪声中谈话。

特征提取是至关重要的步骤,但传统的声学特征的提取需要经过一系列复杂的操作,这回造成能量损失和长时间延迟。所以本文通过网络来学习语音信号的更深层声学特征,实现端到端的语音分离。

1.基于传统声学特征的语音分离

这部分列出了传统声学特征的语音分离算法,同时也提出了传统声学特征的语音分离算法的缺点,引出深层声学特征(deep acoustic feature,DAF),实现端到端语音分离。

2.基于深层声学特征的端到端语音分离

在这里插入图片描述

3.实验结果和分析

对评价指标进行介绍,不同损失函数对比,不同算法对比,网络结构,时间延迟对比。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值