elasticsearch使用more_like_this实现基于内容的推荐

官网地址:https://www.elastic.co/guide/en/elasticsearch/reference/2.3/query-dsl-mlt-query.html

基于内容的推荐通常是给定一篇文档信息,然后给用户推荐与该文档相识的文档。Lucene的api中有实现查询文章相似度的接口,叫MoreLikeThis。Elasticsearch封装了该接口,通过Elasticsearch的More like this查询接口,我们可以非常方便的实现基于内容的推荐。

先看一个查询请求的json例子:

GET /mychat/mytype/_search
{
   "query":{   
        "more_like_this":{   
            "fields" : ["ask", "answer"],   
            "like_text" : "中国" ,
            "min_term_freq" : 1,
            "max_query_terms" : 12
        }   
    }  
}

其中:

fields是要匹配的字段,如果不填的话默认是_all字段

like_text是匹配的文本。

除此之外还可以添加下面条件来调节结果

percent_terms_to_match:匹配项(term)的百分比,默认是0.3

min_term_freq:一篇文档中一个词语至少出现次数,小于这个值的词将被忽略,默认是2

max_query_terms:一条查询语句中允许最多查询词语的个数,默认是25

stop_words:设置停止词,匹配时会忽略停止词

min_doc_freq:一个词语最少在多少篇文档中出现,小于这个值的词会将被忽略,默认是无限制

max_doc_freq:一个词语最多在多少篇文档中出现,大于这个值的词会将被忽略,默认是无限制

min_word_len:最小的词语长度,默认是0

max_word_len:最多的词语长度,默认无限制

boost_terms:设置词语权重,默认是1

boost:设置查询权重,默认是1

analyzer:设置使用的分词器,默认是使用该字段指定的分词器


下面介绍下如何用Java api调用,一共有三种调用方式,不过本质上都是一样的,只不过是做了一些不同程度的封装。

[java]  view plain  copy
  1. MoreLikeThisRequestBuilder mlt = new MoreLikeThisRequestBuilder(client, "indexName""indexType""id");  
  2. mlt.setField("title");//匹配的字段  
  3. SearchResponse response = client.moreLikeThis(mlt.request()).actionGet();  
这种是在查询与某个id的文档相似的文档。这个接口是直接在client那调用的,比较特殊。还有两种就是构造Query进行查询

[java]  view plain  copy
  1. MoreLikeThisQueryBuilder query = QueryBuilders.moreLikeThisQuery();  
  2. query.boost(1.0f).likeText("xxx").minTermFreq(10);  
这里的boost、likeText方法完全和上面的参数对应的。下面这种就是把要匹配的字段作为参数传进来,参数和MoreLikeThisQueryBuilder是一样的。

[java]  view plain  copy
  1. MoreLikeThisFieldQueryBuilder query = QueryBuilders.moreLikeThisFieldQuery("fieldNmae"); 
最后给一个创建索引的DSL语句:


{
    "settings": {
        "number_of_shards": 2,
        "number_of_replicas": 1
    },

    "mappings": {
        "chat_str": {
            "date_detection": false,
            "dynamic_templates": [{
                "es_string": {
                    "match": "*",
                    "match_mapping_type": "string",
                    "mapping": {
                        "type": "string",
                        "index": "analyzed",
                        "analyzer": "ik_max_word"
                    }
                }
            }],
            "properties": {
                "title": {
                    "type": "string",
                    "index": "analyzed",
                    "analyzer": "ik_max_word"
                },
                "content": {
                    "type": "string",
                    "index": "analyzed",
                    "analyzer": "ik_max_word"
                }
            }
        }
    }
}

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Soyoger

听说打赏的都进了福布斯排行榜。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值