前言:本篇博客为大家介绍一篇我参与撰写的中文研究综述《人工智能生成内容模型的数字水印技术研究进展》,便于大家了解AIGC模型的相关数字水印技术发展现状。感兴趣的小伙伴欢迎点击下方文献链接阅读全文~
人工智能(AI)正在重塑我们的世界,作为当前最前沿技术之一的人工智能生成内容(AIGC),其发展历程和未来前景值得深入探讨。本文追溯从传统AI到AIGC的技术演进,分析这一过程中的关键转折点,并探讨AIGC引发的挑战和问题,以及相应的解决策略。同时,本文也关注全球范围内的法律法规和国际动态,特别是不同国家和组织在AI监管方面的具体措施,尤其突出中国在全球AI治理中的积极角色。
本文着重介绍AIGC模型中的AIGC数字水印技术。随着AIGC技术的兴起,AIGC数字水印在模型保护、生成内容溯源和样本保护等新领域展现其重要性。通过介绍AIGC模型中数字水印技术的研究进展,本文旨在为理解AIGC安全领域的发展提供新的视角和维度,同时为AIGC领域的应用实践提供有价值的参考。
随着大模型时代的到来,AIGC模型的产品化引发了一系列安全挑战,这些挑战主要涉及大模型版权的保护、训练成本和数据价值等方面。以GPT-3为例,其对大量训练数据的需求和昂贵的计算资源需求反映出其巨大的经济成本。同时,这些训练数据不仅具有商业价值,还涉及知识产权问题。
此外,AIGC生成的内容可能导致虚假信息的传播和难以追溯的问题,这突显了个人隐私、伦理违规和不适内容等一系列挑战。为应对这些问题,AIGC数字水印技术应运而生,主要分为三大类(如图1):模型确权水印、生成内容水印和样本保护水印。模型确权水印旨在保护专有大模型的权益,可以分为白盒水印和黑盒水印;生成内容水印则用于追踪版权和预防AIGC内容的潜在危害,包括内生水印和外置水印;样本保护水印则确保模型训练样本的可追溯性和安全性,分为验证水印和扰动水印。这些水印技术成为维护内容安全和模型训练者权益的关键手段,为构建更安全、可信的人工智能生成内容提供了重要支持。
郭钊均,李美玲,周杨铭,等. 人工智能生成内容模型的数字水印技术研究进展 [J]. 网络空间安全科学学报,2024,2(1):13-39.
参考资料