对Efficient Parameter-free Clustering Using First Neighbor Relations论文算法的简单介绍

Efficient Parameter-free Clustering Using First Neighbor Relations这篇论文提出了一个无需参数的聚类方法,对于大样本数据也适用,计算复杂度低。

如果j是i的第一个邻居or i是j的第一个邻居or i的第一个邻居就是j的第一个邻居,则A(i,j)为1,否则为0

这样形成一个对称稀疏邻接矩阵,通过矩阵形成一个有向图,边来表示A(i,j)=1

下图(b)红圈表示九个星球的第一邻居,黄圈表示邻居为同一个

上图(c)是完成第一次聚类的效果,接下来对每个聚类重新进行计算,通过求均值得到三个cluster center;把这三个center再进行聚类,直到最后形成一个聚类。最后只要把适合我们聚类数量的结果输出即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值