赫夫曼树的定义
- 给定n个权值作为n个叶子节点,构建一个二叉树,若该树的带权路径长度(wpl - weight path length)
- 赫夫曼树是带权路径长度最短的树,权值较大的节点离根较近
与赫夫曼树相关的几个重要概念
- 路径:在一棵树中,从一个节点往下可以达到的孩子或孙子节点之间的通路,称为路径
- 路径长度:通路中分支的数目称为路径长度。第 n 层的节点到第 m 层节点的路径长度为 m-n(比如规定根节点的层数为1,那么从根节点到第L层节点的路径长度为L-1)
- 节点的权:若将树中的节点赋给一个有着特殊意义的数值,则这个数值叫做该节点的权
- 节点的带权路径长度:从根节点到该节点之间的路径长度与该节点的权的乘积
- 树的带权路径长度:所有叶子节点的带权路径长度之和(WPL),权值越大的节点离根节点越近的二叉树才是最优二叉树
- WPL最小的就是赫夫曼二叉树
构成赫夫曼树的步骤
- 给定一个序列{13,7,8,3,29,6,1},要求转成一颗赫夫曼树:
- 从小到大对数组进行排序,其中数组中的每一个数据都是一个节点,每个节点都可以看成是一个最简单的二叉树(没有左右子节点的二叉树)
- 取出根节点权值最小的两颗二叉树(取出后从数组中删除)
- 将取出的两颗二叉树组成一颗新的二叉树,该新的二叉树的根节点的权值是前面两颗二叉树根节点权值的和
- 再将这个新的二叉树放回到数组中,以根节点的权值大小再次排序,不断重复上面的步骤,直到数列中,所有的数据都被处理完毕,就得到一颗赫夫曼树
- 赫夫曼树的构建步骤视频讲解
代码实现
public class Node implements Comparable<Node>{
public int val;
public Node left;
public Node right;
public Node(int val) {
this.val = val;
}
@Override
public String toString() {
return "Node{" +
"val=" + val +
'}';
}
@Override
public int compareTo(Node o) {
return this.val - o.val;
}
}
public class HuffmanTree {
public Node root;
public int[] arr;
public HuffmanTree(int[] arr) {
this.arr = arr;
this.root = creatHuffmanTree(arr);
}
public Node creatHuffmanTree(int[] arr){
if (arr.length == 0){
return null;
}
if (arr.length < 2){
return new Node(arr[0]);
}
List<Node> list = new ArrayList<>();
for (int i : arr) {
list.add(new Node(i));
}
Collections.sort(list);
while (list.size()>1){
Node sub_root = new Node(list.get(0).val + list.get(1).val);
sub_root.left = list.get(0);
sub_root.right = list.get(1);
list.remove(1);
list.remove(0);
list.add(sub_root);
Collections.sort(list);
}
return list.get(0);
}
public void preList(Node root){
if (root == null){
System.out.println("二叉树为空!!");
return;
}
System.out.println(root);
if (root.left != null){
preList(root.left);
}
if (root.right != null){
preList(root.right);
}
}
}