微积分学和算法分析中的OO,
引言
微积分中有无穷小和有界的概念,对应的符号分别为OO,
。
类似的,在算法分析中也有渐近上/下界、非紧上/下界和紧渐近界的概念,对应的符号分别为O/Ω,o/ωO/Ω,o/ω和ΘΘ。
既然前两个符号相同,那么这些符号有什么联系呢?
比较
根据微积分学中的定义,有界符号OO定义为
无穷小量符号
本文探讨微积分与算法分析中O, oo符号的含义和联系。微积分中的O表示有界,oo表示无穷小,而算法分析中的O、Ω、o、ω则描述了函数增长的关系。虽然符号相同,但它们在不同领域的应用和解释有所不同,O(g(n))和Ω(g(n))分别代表函数的渐近上界和下界,o(g(n))和ω(g(n))表示非紧上/下界,Θ(g(n))表示紧渐近界。两者通过定义的等价关系建立了联系。"
78474375,7242858,百度智能报警合并策略与实战,"['运维', '异常检测', '数据分析', '报警管理', '自动化运维']
微积分中有无穷小和有界的概念,对应的符号分别为OO,
。
类似的,在算法分析中也有渐近上/下界、非紧上/下界和紧渐近界的概念,对应的符号分别为O/Ω,o/ωO/Ω,o/ω和ΘΘ。
既然前两个符号相同,那么这些符号有什么联系呢?
根据微积分学中的定义,有界符号OO定义为
无穷小量符号
579
1535

被折叠的 条评论
为什么被折叠?