CS231n
Lecture 4: Backpropagation and Neural Networks
Backpropagation
反向传播的理论基础:多元函数微分学中的链式法则
z=z(x,y),x=x(u,v),y=y(u,v)⇒dz=∂z∂xdx+∂z∂ydy=∂z∂x(∂x∂udu+∂x∂vdv)+∂z∂y(∂y∂udu+∂y∂vdv)⇒∂z∂u=∂z∂x∂x∂u+∂z∂y∂y∂u
z
=
z
(
x
,
y
)
,
x
=
x
(
u
,
v
)
,
y
=
y
(
u
,
v
)
⇒
d
z
=
∂
z
∂
x
d
x
+
∂
z
∂
y
d
y
=
∂
z
∂
x
(
∂
x
∂
u
d
u
+
∂
x
∂
v
d
v
)
+
∂
z
∂
y
(
∂
y
∂
u
d
u
+
∂
y
∂
v
d
v
)
⇒
∂
z
∂
u
=
∂
z
∂
x
∂
x
∂
u
+
∂
z
∂
y
∂
y
∂
u
于是梯度可以不断向前传递
Q2: what does it look like?
A: Jacobian shape难道不是
100×4096×4096
100
×
4096
×
4096
?
Neural Networks
[FC+ReLU]xN + Softmax/SVM
单层感知机来源于神经生物学,但是现在的神经网络并没有仿生人类神经