Lecture 4: Backpropagation and Neural Networks

CS231n

Lecture 4: Backpropagation and Neural Networks

Backpropagation

反向传播的理论基础:多元函数微分学中的链式法则
z=z(x,y),x=x(u,v),y=y(u,v)dz=zxdx+zydy=zx(xudu+xvdv)+zy(yudu+yvdv)zu=zxxu+zyyu z = z ( x , y ) , x = x ( u , v ) , y = y ( u , v ) ⇒ d z = ∂ z ∂ x d x + ∂ z ∂ y d y = ∂ z ∂ x ( ∂ x ∂ u d u + ∂ x ∂ v d v ) + ∂ z ∂ y ( ∂ y ∂ u d u + ∂ y ∂ v d v ) ⇒ ∂ z ∂ u = ∂ z ∂ x ∂ x ∂ u + ∂ z ∂ y ∂ y ∂ u
于是梯度可以不断向前传递
Q2: what does it look like?
A: Jacobian shape难道不是 100×4096×4096 100 × 4096 × 4096

Neural Networks

[FC+ReLU]xN + Softmax/SVM
单层感知机来源于神经生物学,但是现在的神经网络并没有仿生人类神经

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值