高斯滤波(Gauss Filter)是线性滤波中的一种。在OpenCV图像滤波处理中,高斯滤波用于平滑图像,或者说是图像模糊处理,因此高斯滤波是低通的。其广泛的应用在图像处理的减噪过程中,尤其是被高斯噪声所污染的图像上。
高斯滤波的基本思想是: 图像上的每一个像素点的值,都由其本身和邻域内其他像素点的值经过加权平均后得到。其具体操作是,用一个核(又称为卷积核、掩模、矩阵)扫描图像中每一个像素点,将邻域内各个像素值与对应位置的权值相称并求和。从数学的角度来看,高斯滤波的过程是图像与高斯正态分布做卷积操作。
注意: 高斯滤波是将二维高斯正态分布放在图像矩阵上做卷积运算。考虑的是邻域内像素值的空间距离关系,因此对彩色图像处理时应分通道进行操作,也就是说操作的图像原矩阵时用单通道数据,最后合并为彩色图像。
本章节仅讨论快速高斯滤波的实现,如对高斯滤波的基本原理和实现不理解的,可以先看之前的一篇
OpenCV高斯滤波器详解及代码实现
一、高斯函数分离特性
可以看到,高斯二维公式可以推导为X轴与Y轴上的一维高斯公式。而图形矩阵是二维的,高斯滤波就是将核范围中的各个点的坐标带入高斯二维公式,得出在核矩阵上的空间分布特性,这些特性将作为权值反应在核矩阵的各个点上。最终使用核与图像矩阵作卷积运算得到处理图像。
在之前的那篇高斯滤波文章上,采用的二维方式实现的。假设一张单通道图片大小(M*N),核大小(size*size),核上的(size*size)个点都将被计算权值。最终实现的复杂度为 (M*N*size*size)。
而如果将二维分步成X轴Y轴的一维处理。在X轴上计算size个点,Y轴上size个点。其复杂度将优化到 (M*N*size*2).
注意:先使用X轴方向(Y轴方向)对整个图像矩阵作卷积,再在Y轴方向(X轴方向)对整个图像矩阵作卷积。
二、高斯二维的空间分布
二维高斯是构建高斯滤波器的基础。可以看到,G(x,y)在x轴y轴上的分布是一个突起的帽子的形状。这里的sigma可以看作两个值,一个是x轴上的分量sigmaX,另一个是y轴上的分量sigmaY。对图像处理可以直接使用sigma并对图像的行列操作,也可以用sigmaX对图像的行操作,再用sigmaY对图像的列操作。它们是等价的。
当sigmaX和sigmaY取值越大,整个形状趋近于扁平;当sigmaX和sigmaY取值越小,整个形状越突起。
假设核大小为(size*size),那么核上(size*size)个点都将计算权值。
三、高斯二维分步为X轴Y轴的高斯一维
假设一个(3*3)的核,在X轴(k方向)上
在Y轴(l方向)上