系列文章
文章目录
本文主要涉及数据资源与服务中的数据产品和数据服务部分。
本文目录如下:
一、应用场景
背景:电子公交卡的业务试点,想要了解这个业务对整个美团 App 有什么样的影响。
《增长黑客》中提到了一个海盗模型的方法,本质上是对流量的转换做一个漏斗形的拆解和分析。包含了从获取用户到用户转化和激活的步骤和对应的分析方法。
但是仅有方法是不够的,还要有对应的数据支撑。那数据是怎么组织的呢?这里分为5个部分。
那我们要做这些分析的时候该怎么办呢?
就要看下面这种 SQL。
先看 FROM,关联订单表、城市表和城市维度表
然后看 WHERE,选出来在 18 年 8 月到 19 年 8 月之间的公交业务和复购的订单
再看 GROUP BY 和 SUM,基本就清楚了。
这里用到了之前说到的 OLAP 分析。OLAP 分析有哪些方法呢?这里提到了 5 种。
- 钻取(下钻):增加维度,能够通过更细的粒度去分析问题。(假设一个长方体有一层,扩展成三层)
- 上卷(上钻):减少维度,能够从宏观(相对)的角度看待问题。(假设一个立方体有三层,压缩成一层)
- 切片:同一个维度,只看其某一个值。(假设一个立方体有三层,只保留一层)
- 切块:同一个维度,只看其某几个值。(假设一个立方体有三层,只保留两层)
- 旋转:行列变换。