大模型应用开发基础

文章探讨了AGI(人工智能通用)时代中AI的广泛应用,强调了AI产品开发者的重要性,以及他们所需的三懂能力(懂业务、懂AI和懂编程)。文章还分析了如何利用大模型如GPT系列,提出成功落地大模型的关键要素,包括认知对齐、业务人员的认知、编程能力等,并讨论了技术架构和应用策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

AGI 时代,AI 无处不在,形成新的社会分层:

  1. AI 使用者,使用别人开发的 AI 产品
  2. AI 产品开发者,设计和开发 AI 产品
  3. 基础模型相关,训练基础大模型,或为大模型提供基础设施

越向下层,重要性越高,从业人数越少。

AI 产品开发者的核心能力模型

三懂:

  1. 懂业务,就是懂用户、懂客户、懂需求、懂市场、懂运营、懂商业模式
  2. 懂 AI,就是懂 AI 能做什么,不能做什么;怎样才能做得更好,更快,更便宜
  3. 懂编程,就是懂如何编程实现一个符合业务需求的产品

建议:

  1. 编程向的,要尽可能靠近业务,争取全栈,否则走不远

  2. 业务向的,试试学编程,自主性更强。AI 编程,门槛已经低多了(但绝不是没门槛)

  3. 原理:不懂原理就不会举一反三,走不了太远。

  4. 实践:不懂实践就只能纸上谈兵,做事不落地。

  5. 认知:认知不高就无法做对决策,天花板太低。

大模型 AI 能干什么?

大模型,全称「大语言模型」,英文「Large Language Model」,缩写「LLM」。

国家公司对话产品大模型网址
美国OpenAIChatGPTGPT-3.5、GPT-4https://chat.openai.com/
美国MicrosoftCopilotGPT-4 和未知https://copilot.microsoft.com/
美国GoogleGeminiGeminihttps://bard.google.com/
美国AnthropicClaudeClaudehttps://claude.ai/
中国百度文心一言文心 4.0https://yiyan.baidu.com/
中国阿里通义千问通义千问https://tongyi.aliyun.com/qianwen
中国智谱 AI智谱清言GLM-4https://chatglm.cn/
中国月之暗面Kimi ChatMoonshothttps://kimi.moonshot.cn/
中国MiniMax星野abab6https://www.xingyeai.com/

当下,如何发挥大模型的现有能力呢?最大障碍是没有形成认知对齐。

image-20240420162013552

成功落地大模型五要素

  1. 业务人员的积极
  2. 对 AI 能力的认知
  3. 业务团队自带编程能力
  4. 小处着手
  5. 老板的耐心

找落地场景的思路:

  1. 从最熟悉的领域入手
  2. 找「文本进、文本出」的场景
  3. 别求大而全。将任务拆解,先解决小任务、小场景
  4. 让 AI 学最厉害员工的能力,再让 ta 辅助其他员工,实现降本增效

大模型是怎么生成结果的?

通俗原理

其实,它只是根据上文,猜下一个词(的概率)……

OpenAI 的接口名就叫「completion」,也证明了其只会「生成」的本质。

下面用程序演示「生成下一个字」。你可以自己修改 prompt 试试。还可以使用相同的 prompt 运行多次。

略深一点的通俗原理

训练和推理是大模型工作的两个核心过程。

用人类比,训练就是学,推理就是用。学以致用,如是也。

用不严密但通俗的语言描述训练和推理的原理:

训练:

  1. 大模型阅读了人类说过的所有的话。这就是「机器学习
  2. 训练过程会把不同 token 同时出现的概率存入「神经网络」文件。保存的数据就是「参数」,也叫「权重

推理:

  1. 我们给推理程序若干 token,程序会加载大模型权重,算出概率最高的下一个 token 是什么
  2. 用生成的 token,再加上上文,就能继续生成下一个 token。以此类推,生成更多文字

Token 是什么?

  1. 可能是一个英文单词,也可能是半个,三分之一个
  2. 可能是一个中文词,或者一个汉字,也可能是半个汉字,甚至三分之一个汉字
  3. 大模型在开训前,需要先训练一个 tokenizer 模型。它能把所有的文本,切成 token

再深一点点

这套生成机制的内核叫「Transformer 架构」。Transformer 仍是主流,但其实已经不是最先进的了。

架构设计者特点链接
TransformerGoogle最流行,几乎所有大模型都用它OpenAI 的代码
RWKVPENG Bo可并行训练,推理性能极佳,适合在端侧使用官网RWKV 5 训练代码
MambaCMU & Princeton University性能更佳,尤其适合长文本生成GitHub

目前只有 transformer 被证明了符合 scaling-law。(缩放定律) 算力越大效果越好

用好 AI 的核心心法

OpenAI 首席科学家 Ilya Sutskever 说过:

数字神经网络和人脑的生物神经网络,在数学原理上是一样的。

所以,我们要:

把 AI 当人看

  1. 用「当人看」来理解 AI
  2. 用「当人看」来控制 AI
  3. 用「当人看」来说服别人正确看待 AI 的不足

当什么人呢?

  1. 学习时当老师
  2. 工作时当助手
  3. 休闲时当朋友

这是贯彻整门课的心法,乃至我们与 AI 相伴的人生的心法。

大模型应用业务架构

image-20240420163633974

Agent 还太超前,Copilot 值得追求。

理清业务,拆出 SOP,非常关键。

大模型应用技术架构

大模型应用技术特点:门槛低,天花板高。

纯 Prompt

当人看:你说一句,ta 回一句,你再说一句,ta 再回一句……

image-20240420163818491

Agent + Function Calling

  • Agent:AI 主动提要求
  • Function Calling:AI 要求执行某个函数
  • 当人看:你问 ta 过年去哪玩,ta 先问你有多少预算

image-20240420163845093### RAG(Retrieval-Augmented Generation)检索增强生成

  • Embeddings:把文字转换为更易于相似度计算的编码。这种编码叫向量
  • 向量数据库:把向量存起来,方便查找
  • 向量搜索:根据输入向量,找到最相似的向量
  • 当人看:考试答题时,到书上找相关内容,再结合题目组成答案,然后,就都忘了

image-20240420164113343

百分之80的行业大模型都是用Rag做的,都没有做训练,因为用不上,解决效果足够好,成本还低,实时性好,我个人理解像动态库

Fine-tuning(精调/微调)

当人看:努力学习考试内容,长期记住,活学活用。

image-20240420164737019

得到专有的垂直领域大模型

如何选择技术路线

面对一个需求,如何开始,如何选择技术方案?下面是个不严谨但常用思路。

其中最容易被忽略的,是准备测试数据

image-20240420165341594

值得尝试 Fine-tuning 的情况:

  1. 提高模型输出的稳定性
  2. 用户量大,降低推理成本的意义很大
  3. 提高大模型的生成速度
  4. 需要私有部署

如何选择基础模型

基础模型选型,也是个重要因素。合规和安全是首要考量因素。

**划重点:**没有最好的大模型,只有最适合的大模型

需求国外闭源大模型国产闭源大模型开源大模型
国内 2C🛑
国内 2G🛑
国内 2B
出海
数据安全特别重要🛑🛑

然后用测试数据,在可以选择的模型里,做测试,找出最合适的。

推荐:

  1. ChatALL 做测试,比较高效
  2. 唯一值得相信的榜单:LMSYS Chatbot Arena Leaderboard
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值