一、典型相关分析VS皮尔逊相关系数/斯皮尔曼相关系数
典型相关分析(Canonical Correlation analysis) 研究两组变量(每组变量中都可能有多个指标) 之间相关关系的一种多元统计方法。它能够揭示出两组变量之间的内在联系。
皮尔逊相关系数和斯皮尔曼相关系数针对的是两个变量的相关性,典型相关分析针对的是两组变量进行相关分析,相当于对每组变量进行线性组合,求这两个组合后的变量之间的相关性,结果也用p检验方法,显著性最大的那组作为最后的线性组合的系数。
数据对比:
下图求皮尔逊相关系数,求各变量之间的相关系数,即(身高,体重)得到一个相关系数,(身高,肺活量)得到一个相关系数,依次类推,得到互不相同的所有变量之间的相关系数。