数学建模——典型相关分析(CCA)及spss操作过程

本文介绍了典型相关分析与皮尔逊、斯皮尔曼相关系数的区别,详细阐述了典型相关分析的定义及其在SPSS中的操作步骤。通过案例展示了如何分析两组变量(体重、腰围、脉搏与引体向上、起坐、跳跃次数)的相关性,结果显示两者存在正相关性,相关系数为0.796。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、典型相关分析VS皮尔逊相关系数/斯皮尔曼相关系数

典型相关分析(Canonical Correlation analysis) 研究两组变量(每组变量中都可能有多个指标) 之间相关关系的一种多元统计方法。它能够揭示出两组变量之间的内在联系。

皮尔逊相关系数和斯皮尔曼相关系数针对的是两个变量的相关性,典型相关分析针对的是两组变量进行相关分析,相当于对每组变量进行线性组合,求这两个组合后的变量之间的相关性,结果也用p检验方法,显著性最大的那组作为最后的线性组合的系数。

数据对比:

下图求皮尔逊相关系数,求各变量之间的相关系数,即(身高,体重)得到一个相关系数,(身高,肺活量)得到一个相关系数,依次类推,得到互不相同的所有变量之间的相关系数。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三月的一天

你的鼓励将是我前进的动力。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值