我认为一个挺好的总结:http://blog.csdn.net/flyawayl/article/details/56834836?locationNum=6&fps=1
博弈入门只学了巴什博弈,nim博弈,威佐夫博弈,还有很多其他变形的很难的没学.
我认为博弈这一大类的解题方法就是寻找必败点
hdu1847巴什博弈
是3的倍数就是先手必败点
hdu2176
简单尼姆博弈
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int a[1000005]={0};
int main()
{
int n;
while(scanf("%d",&n)!=EOF)
{
if(n==0) break;
int i,j;
for(i=0;i<n;++i)
{
scanf("%d",&a[i]);
}
int sum;
if(n==1){
cout<<1<<endl;
continue;
}
sum=a[0]^a[1];
if(n>2){
for(i=2;i<n;++i)
{
sum=sum^a[i];
}
}
//cout<<sum<<endl;
int x=sum;
if(sum==0){
cout<<"No"<<endl;
continue;
}
cout<<"Yes"<<endl;
int ptr=0;
while(sum!=1){
sum=sum>>1;
++ptr;
}
int k=0;
for(i=0;i<n;++i)
{
if(((a[i]>>ptr)&1)==1){
//k++;
int y=a[i]^x;
cout<<a[i]<<" "<<y<<endl;
}
}
//cout<<k<<endl;
}
return 0;
}
hdu1527
威佐夫博弈模板题
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int f(int a,int b)
{
int k=0;
double x=a*(sqrt(5)-1.0)/2.0;
if(x>=0.5){
k=(int)x+1;
}
else{
k=(int)x;
}
//cout<<k<<endl;
if(b==a+k){
return 0;
}
else{
return 1;
}
}
int main()
{
int a,b;
while(scanf("%d %d",&a,&b)!=EOF)
{
int k=0;
if(a==b){
cout<<1<<endl;
continue;
}
int c=(a<b)?a:b;
int d=(a<b)?b:a;
//cout<<c<<" "<<d<<endl;
cout<<f(c,d)<<endl;
}
return 0;
}
普通的找必败点的博弈
poj2505
举一个样例:162
162是必败点
按最大能力*9一定能到达162的最小整数是必胜点
16/9=18;
按最小能力*2能到达18的最小整数是必败点。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
//在博弈中一定要学会找必败点,后继点和SG值
int main()
{
long long n;
while(scanf("%lld",&n)!=EOF)
{
int t=0;
while(n!=1)
{
if(t%2==0)
{
n=(n+8)/9;
}
else{
n=(n+1)/2;
}
++t;
}
if(t%2!=0){
cout<<"Stan wins."<<endl;
}
else{
cout<<"Ollie wins."<<endl;
}
}
return 0;
}