基于深度学习的音乐推荐系统简述

本文简要介绍我做的基于深度学习的音乐推荐系统。主要从需求分析与设计实现的角度来进行介绍。

(一)需求分析


  基于深度学习的音乐推荐系统旨在以个性化音乐推荐模型为基础,使用B/S架构的形式实现。个性化推荐模型使用了 随机梯度下降(SGD)、 K近邻分类算法(KNN)、协同过滤等传统机器学习领域算法进行音乐推荐的,同时使用了类似于Word2vec的词袋模型和词向量模型来对歌词进行文本处理,构建了异构文本网络,来标识用户的歌曲偏好,然后在此基础上引入了一个Java方面深度学习库deepLearning4j来实现对音乐特征提取,对音乐进行标签化,分为古典、流行等类别。可参考来进行混合推荐的。在本系统中,用户可以浏览音乐,还可以收藏音乐,同时还能为所喜爱的音乐点赞,同时还可以进行登录和注册。管理员除了可以实现普通用户所实现的功能外,还可以进行音乐、评论、用户的管理。系统通过隐式收集用户操作记录向用户推荐个性化的音乐,与此同时,该系统还具有排行榜、热歌推荐等普通音乐网站所具有的功能,其中排行榜分为日榜和月榜,热歌推荐是根据当天用户点击量最高的50首歌曲进行推荐给用户的。


(二)概要设计


1、系统架构
  本系统采用MVC模式作为架构,其中使用了MyBatis来作为数据持久化框架,进行数据库数据的映射。同时前端采用了JSP、JavaScript、CSS来进行开发,后端采用SSM框架来进行开发,该框架为当前企业中较为流行的一种框架。

 在这里插入图片描述

 
2、系统总体设计图

在这里插入图片描述
3、数据库设计
  数据库方面我主要设计了11个表,分别是歌曲收藏表、歌曲下载记录表、用户点赞表、音乐播放记录表、歌曲推荐表a、歌曲推荐表b、歌曲评论表、用户角色表、音乐详情表、用户信息表、用户角色表。下面是数据库关系图。

 在这里插入图片描述

 


(三)详细设计


1、所用技术

2、具体模块设计
(1)用户注册模块

在这里插入图片描述 

 
(2)用户登录模块

在这里插入图片描述
(3)管理员管理模块

在这里插入图片描述 

 


(4)音乐播放模块

在这里插入图片描述
(5)歌曲排行榜模块

在这里插入图片描述 

 


(6)个性化音乐推荐模块模块

在这里插入图片描述
(五)实现
已经将完整项目上传github,可参考:基于深度学习的音乐推荐系统
————————————————
版权声明:本文为CSDN博主「Evan_love」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/Evan_love/article/details/105315701

 

创建一个基于深度学习的歌曲识别系统通常涉及几个关键步骤,这里我将以Python和TensorFlow为例简述一下基本流程。首先,你需要安装相关的库,如`tensorflow`, `numpy`, 和 `matplotlib`。这个任务可以分为以下几个部分: 1. 数据预处理:收集音频数据集,将其转换为适合神经网络处理的形式,例如MIDI文件或MFCCs (梅尔频率倒谱系数)。 ```python import librosa from sklearn.preprocessing import StandardScaler def extract_features(file_path): y, sr = librosa.load(file_path) mfccs = librosa.feature.mfcc(y=y, sr=sr) scaler = StandardScaler() scaled_mfccs = scaler.fit_transform(mfccs.T) return scaled_mfccs # 加载训练样本并提取特征 X_train, y_train = [], [] for file in train_files: X_train.append(extract_features(file)) y_train.append(label) X_train = np.array(X_train) y_train = np.array(y_train) ``` 2. 构建模型:使用卷积神经网络(CNN)或循环神经网络(RNN)等结构,因为音乐序列具有时间依赖性。 ```python import tensorflow as tf model = tf.keras.Sequential([ tf.keras.layers.Conv1D(filters=64, kernel_size=5, activation='relu', input_shape=(n_mfccs, 1)), tf.keras.layers.MaxPooling1D(pool_size=2), # 添加更多层... tf.keras.layers.Dense(units=n_classes, activation='softmax') ]) ``` 3. 训练模型: ```python model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) history = model.fit(X_train, y_train, epochs=num_epochs, validation_split=0.2) ``` 4. 预测和评估: ```python def predict_song(audio_data): features = extract_features(audio_data) prediction = model.predict(np.array([features])) predicted_class = np.argmax(prediction) return predicted_class, model.predict_classes(features) # 使用模型对新音频进行识别 song_name, _ = predict_song('path_to_your_audio_file.wav') ``` 5. 可视化训练过程:使用`matplotlib`展示损失和准确率变化。 ```python plt.plot(history.history['loss'], label='Training Loss') plt.plot(history.history['val_loss'], label='Validation Loss') plt.xlabel('Epochs') plt.ylabel('Loss') plt.legend() plt.show() plt.plot(history.history['accuracy'], label='Training Accuracy') plt.plot(history.history['val_accuracy'], label='Validation Accuracy') plt.xlabel('Epochs') plt.ylabel('Accuracy') plt.legend() plt.show() ``` 注意,这只是一个简化版本的概述,实际项目可能需要更复杂的数据处理、模型架构调整以及性能优化。如果你想要编写完整的代码,建议参考深度学习教程和相关论文。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值