# fashion-mnist简介和使用及下载

GitHub地址：https://github.com/zalandoresearch/fashion-mnist

1. JPEG –> PNG
2. 裁剪背景
3. 按比例： max(h,w)28max(h,w)28 将图像缩放，也就是将一个维度缩放至28
4. 锐化
5. 再扩充至28*28，再把object调整至图片中央
6. 将负的像素点剔除
7. 转化成28*28的灰度图

import  tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

print(fashion.train.images.shape)
print(fashion.train.labels.shape)

batch_size = 100
batch_num = fashion.train.num_examples // batch_size

#定义X,Y参数
x = tf.placeholder(tf.float32, shape=[None, 784])
y = tf.placeholder(tf.float32, shape=[None, 10])
#定义W,B参数
W = tf.Variable(tf.truncated_normal([784, 10], stddev= 0.1))
b = tf.Variable(tf.zeros([10]) + 0.1)

#预测结果
prediction = tf.nn.softmax(tf.matmul(x, W) + b)
#使用交叉熵计算loss
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=prediction, labels=y))
#定义优化器
#判断预测结果是否正确
correct_prediction = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
#计算准确率，将bool值转为float32
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(21):
for i in range(batch_num):
batch_xs, batch_ys = fashion.train.next_batch(batch_size)
sess.run(train_step, feed_dict={x: batch_xs, y:batch_ys})
acc = sess.run(accuracy, feed_dict={x:fashion.test.images, y:fashion.test.labels})
print('Epoch: '+str(epoch)+',acc: '+str(acc))



©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客