PyTorch 入门学习(四)————训练分类器


原文链接: https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#sphx-glr-beginner-blitz-cifar10-tutorial-py

数据处理

通常,我们处理的数据有图像、文本、音频或者视频数据,可以使用python的标准包将数据加载到numpy数组中,然后将此数组转换为torch.*Tensor

  • 对于图像,PillowOpenCV等软件包很有用
  • 对于音频,请使用scipylibrosa等软件包
  • 对于文本,基于pythonCython的原始加载,或NLTKSpaCy很有用

对于视觉领域,pytorch已经创建了一个叫做torchvision的数据加载器torchvision.datasetstorch.utils.data.DataLoader,它可以很好的加载普通数据集,如ImagenetCIFAR10MNIST等。

这样给编程提供了极大的便利,避免了重复编写同样的代码。

现在以CIFAR10数据集为例讲解,它具有的类别为:“飞机”,“汽车”,“鸟”,“猫”,“鹿”,“狗”,“青蛙”,“马”,“船”,“卡车”。CIFAR-10中的图像尺寸为3x32x32,即尺寸为32x32像素的3通道彩色图像。
在这里插入图片描述

训练图像分类器

按照以下步骤进行:

  1. 使用以下命令torchvision加载和标准化CIFAR10训练和测试数据集
  2. 定义卷积神经网络
  3. 定义损失函数
  4. 根据训练数据训练网络
  5. 在测试数据上测试网络

1、加载并标准化CIFAR10

使用torchvision加载CIFAR10非常容易。

import torch
import torchvision
import torchvision.transforms as transforms

torch对图像的数据集输出的是范围为[0, 1]PILImage图像。我们将他们归一化为[-1, 1]的张量。

transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                          shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
                                         shuffle=False, num_workers=2)

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

如果在windows下运行或者出现BrokenPipeError,那么将torch.utils.data.DataLoader()num_workers赋值为0.

看下我们训练的图片

import matplotlib.pyplot as plt
import numpy as np

# functions to show an image


def imshow(img):
    img = img / 2 + 0.5     # unnormalize
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
    plt.show()


# get some random training images
dataiter = iter(trainloader)
images, labels = dataiter.next()

# show images
imshow(torchvision.utils.make_grid(images))
# print labels
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))

在这里插入图片描述
输出:

bird  deer   car   car

2、定义一个卷积神经网络

从上节课中“神经网络”代码中复制代码,然后修改输入的通道数,因为图像的输入为3通道,固第一个卷积核的通道数要改。

import torch.nn as nn
import torch.nn.functional as F


class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x


net = Net()

3、定义损失函数和优化器

我们使用的是CrossEntropyLoss损失函数和带动量的SGD梯度下降法。

import torch.optim as optim

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

4、训练网络

这时候事情开始变得有趣了,我们只需要遍历数据迭代器,然后将输入反馈到网络并进行优化。

for epoch in range(2):  # loop over the dataset multiple times

    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        # get the inputs; data is a list of [inputs, labels]
        inputs, labels = data

        # zero the parameter gradients
        optimizer.zero_grad()

        # forward + backward + optimize
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        # print statistics
        running_loss += loss.item()
        if i % 2000 == 1999:    # print every 2000 mini-batches
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 2000))
            running_loss = 0.0

print('Finished Training')

输出:

[1,  2000] loss: 2.174
[1,  4000] loss: 1.853
[1,  6000] loss: 1.670
[1,  8000] loss: 1.568
[1, 10000] loss: 1.523
[1, 12000] loss: 1.477
[2,  2000] loss: 1.404
[2,  4000] loss: 1.380
[2,  6000] loss: 1.355
[2,  8000] loss: 1.327
[2, 10000] loss: 1.326
[2, 12000] loss: 1.285
Finished Training

快速保存我们训练好的模型:

PATH = './cifar_net.pth'
torch.save(net.state_dict(), PATH)

更多保存模型的方法here

5、在测试数据上测试网络

我们已经在训练集上对网络进行了2次训练,但是我们需要检查网络是否学到东西。

我们将通过预测神经网络输出的类别标签和实际的标签进行比较,如果预测正确,则将样本添加到正确预测的列表当中。

第一步,让我们显示测试集中的图像。

dataiter = iter(testloader)
images, labels = dataiter.next()

# print images
imshow(torchvision.utils.make_grid(images))
print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))

在这里插入图片描述
输出:

GroundTruth:    cat  ship  ship plane

接下来让我们重新加载保存的模型(注意:这里不需要保存和重新加载模型,只是说明如何这样做)

net = Net()
net.load_state_dict(torch.load(PATH))

看看神经网络如何看待上面的图片的

outputs = net(images)

神经网络的输出为10类的预测概率,哪一类预测的概率越高,网络就认定该图像属于特定的类别。

_, predicted = torch.max(outputs, 1)

print('Predicted: ', ' '.join('%5s' % classes[predicted[j]]
                              for j in range(4)))

输出:

Predicted:    cat  ship  ship  ship

结果还不错,接下来看一下网络在整个数据集上的表现。

correct = 0
total = 0
with torch.no_grad():
    for data in testloader:
        images, labels = data
        outputs = net(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 10000 test images: %d %%' % (
    100 * correct / total))

输出为:

Accuracy of the network on the 10000 test images: 54 %

看起来似乎不错,接下来我们看看在哪些数据上表现好,在哪些数据上表现不好:

class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
    for data in testloader:
        images, labels = data
        outputs = net(images)
        _, predicted = torch.max(outputs, 1)
        c = (predicted == labels).squeeze()
        for i in range(4):
            label = labels[i]
            class_correct[label] += c[i].item()
            class_total[label] += 1


for i in range(10):
    print('Accuracy of %5s : %2d %%' % (
        classes[i], 100 * class_correct[i] / class_total[i]))

输出:

Accuracy of plane : 59 %
Accuracy of   car : 75 %
Accuracy of  bird : 44 %
Accuracy of   cat : 42 %
Accuracy of  deer : 17 %
Accuracy of   dog : 25 %
Accuracy of  frog : 69 %
Accuracy of horse : 68 %
Accuracy of  ship : 77 %
Accuracy of truck : 63 %

接下来讲解如何在GPU上运行这些神经网络。

在GPU上训练

就像将Tensor转移到GPU一样,也可以将神经网络转移到GPU上。
如果我们有可用的CUDA,首先我们将设备定义为第一个可见的cuda设备:

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Assuming that we are on a CUDA machine, this should print a CUDA device:

print(device)

输出:

cuda:0

本节的其余部分假定这device是CUDA设备。
然后,这些方法将递归遍历所有模块,并将其参数和缓冲区转换为CUDA张量:

net.to(device)

请记住,还必须将每一步的输入和标签也发送到GPU中:

inputs, labels = data[0].to(device), data[1].to(device)

在多个GPU上训练

如果想使用所有GPU来获得更大规模加速,请查看:数据并行性。

接下来可以干更多的事情:

本章完整代码:
CPU版
GPU版

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值