前言
Compliance while resisting: A shear-thickening fluid controller for physical human-robot interaction-Lu Chen
Abstract-Physical human-robot interaction (pHRI) is widely needed in many fields, such as industrial manipulation, home services, and medical rehabilitation, and puts higher demands on the safety of robots. Due to the uncertainty of the working environment, the pHRI may receive unexpected impact interference, which affects the safety and smoothness ofthe task execution. The commonly used linear admittance control (L-AC) can cope well with high-frequency small-amplitude noise, but for medium-frequency high-intensity impact, the effect is not as good. Inspired by the solid-liquid phase change nature ofshear-thickening fluid, we propose a shear-thickening fluid control (SFC) that can achieve both an easy human-robot collaboration and resistance to impact interference. The SFC’s stability, passivity, and phase trajectory are analyzed in detail, the frequency and time domain properties are quantified, and parameter constraints in discrete control and coupled stability conditions are provided. We conducted simulations to compare the frequency and time domain characteristics of L-AC, nonlinear admittance controller (N-AC), and SFC and validated their dynamic properties. In real-world experiments, we compared the performance ofL-AC, N-AC, and SFC in both fixed and mobile manipulators. L-AC exhibits weak resistance to impact. N-ACcan resist moderate impacts but not high-intensity ones andmay exhibit self-excited oscillations. In contrast, SFC demonstrated superior impact resistance and maintained stable collaboration, enhancing comfort in cooperative water delivery tasks. Additionally, a case study was conducted in a factory setting, further affirming the SFC’s capability in facilitating human-robot collaborative manipulation and underscoring its potential in industrial applications.
一、文章简述
该文章提出了一个基于剪切增稠流体的自适应阻尼的导纳控制器,用以解决在“人-机器人”交互过程中来自外界突发的扰动。其主要的思想在于,非牛顿流体的粘度会随剪切速率的变化而变化,这使得它们在不同条件下的行为表现出不同的特性。(当收到突发扰动时,以幂次增长速度增大阻尼从而保证稳定性)
其中变导纳控制器形式如下:
M ⋅ x ¨ + μ ⋅ ∣ x ˙ ∣ n − 1 ⋅ x ˙ = f e x t M \cdot \ddot{x} + \mu \cdot \left | \dot{x} \right |^{n-1} \cdot \dot{x} = f_{ext} M⋅x¨+μ⋅∣x˙∣n−1⋅x˙=fext
x
^
˙
=
g
⋅
x
˙
\dot{\hat{x}} = g \cdot \dot{x}
x^˙=g⋅x˙
其中
μ
\mu
μ,
g
g
g是自定义参数,
x
^
˙
\dot{\hat{x}}
x^˙是输出至运动控制器的速度。比如当我们以较轻的力与机器人进行交互,则由于低速导致的低阻尼则会保证顺应性;若当与机器人交互收到突然的扰动时,由扰动产生的高速导致的高阻尼则保证了稳定性。且由于非牛顿流体的特性,阻尼系数是随着输入量幂次增长,相比较与线性阻尼,该自适应阻尼对于突变式的扰动具有较强的抗干扰能力且保证了低速时的顺应性。
二、总结
该文章的控制器思路不算新颖,还是普通模式即捕获不稳定状态后增加阻尼。基于非牛顿流体的幂次增长增加阻尼(得确保速度大于1,不然随着n的增加,阻尼反而减小)的方式相比较于线性相加,有了更强的区分性(稳定与不稳定之间)。且该文章工作量巨大,文章总共有39页,各个方面都有讲述,后续将逐步描述。