前言
在物理人机交互(Physical Human-Robot Interaction, pHRI)中,无源性(Passivity)是一个重要的概念,用于确保系统的稳定性和安全性。无源性表明系统不能生成比输入更多的能量,这对于人机交互尤为关键,因为它可以防止机器人在与人类互动时出现不受控制的行为。
一、概念简述
1.物理人机交互(Physical Human-Robot Interaction, pHRI)
pHRI是指人类与机器人在物理上直接接触或互动的过程。这种互动可以是通过直接的触摸、拖动、推动或通过其他方式进行的。pHRI的目标是使机器人能够在与人类的接触中进行安全、有效和自然的交互。其中核心概念有安全性、稳定性、自然交互、适应性。无源性控制是保证安全性和稳定性的重要解决手段。
2.无源性控制(Passivity-Based Control, PBC)
PBC是一种控制策略,用于确保动态系统的稳定性,特别是在处理力学系统和机械系统时。无源性控制的核心思想是基于能量守恒原理,通过设计控制器使系统能够保持或减少总能量,从而实现稳定性。
无源性
无源性指的是系统无法生成超过其输入的能量。在控制理论中,如果一个系统的能量不会增加或仅仅维持在一个稳定水平,则该系统被称为无源的。这种特性可以帮助确保系统的稳定性。
能量函数
在无源性控制中,通常使用能量函数来描述系统的状态。能量函数是一个包含系统状态变量的函数,用于评估系统的能量水平。控制策略的设计旨在使系统的能量函数保持不变或减少,从而确保系统稳定。
阻尼和储能
控制器设计中通常考虑系统的阻尼和储能特性。无源性控制器通过调节系统的阻尼,使得系统在受到外部扰动时能够有效地吸收或消耗能量,从而防止不稳定行为的发生。
二、理论详述
1.无源性条件的具体表述
对于一个无源系统,从时间 t 0 t_0 t0到时间 t t t:
Δ E ( t ) = E ( t ) − E ( t 0 ) ≤ ∫ t 0 t P ( τ ) d τ \Delta E(t) = E(t) - E(t_0) \leq \int_{t_0}^{t} P(\tau) \, d\tau ΔE(t)=E(t)−E(t0)≤∫t0tP(τ)dτ
其中:
E
(
t
)
E(t)
E(t) 是系统在时刻 ( t ) 的总能量(包括动能和势能)。
P
(
τ
)
P(\tau)
P(τ)是系统在时刻 ( \tau ) 的瞬时功率(即输入功率)。
∫
t
0
t
P
(
τ
)
d
τ
\int_{t_0}^{t} P(\tau) \, d\tau
∫t0tP(τ)dτ是从时间
t
0
t_0
t0 到时间
t
t
t期间输入功率的时间积分,即累积输入能量。
2.无源性条件的含义
无源性条件的含义是:系统在任何时间段内从外部吸收的总能量(累积输入能量)要大于或等于系统内部能量的增加量。也就是说,系统不能产生多余的能量。
如果
Δ
E
(
t
)
\Delta E(t)
ΔE(t) 等于
∫
t
0
t
P
(
τ
)
d
τ
\int_{t_0}^{t} P(\tau) \, d\tau
∫t0tP(τ)dτ,系统是无源且耗散性的,输入的所有能量都被存储在系统中,或者在内部耗散掉。
如果
Δ
E
(
t
)
\Delta E(t)
ΔE(t) 小于
∫
t
0
t
P
(
τ
)
d
τ
\int_{t_0}^{t} P(\tau) \, d\tau
∫t0tP(τ)dτ,系统是严格无源的,一部分输入能量被耗散掉,另一部分存储在系统中。
如果
Δ
E
(
t
)
\Delta E(t)
ΔE(t) 大于
∫
t
0
t
P
(
τ
)
d
τ
\int_{t_0}^{t} P(\tau) \, d\tau
∫t0tP(τ)dτ,则系统产生了额外的能量,这意味着系统不是无源的。
三、实现步骤
在利用导纳控制柔顺进行拖动示教时判定无源性可以通过以下步骤进行:
1.计算系统的瞬时能量
计算系统动能:
E
kinetic
(
t
)
=
1
2
M
v
(
t
)
2
E_{\text{kinetic}}(t) = \frac{1}{2} M v(t)^2
Ekinetic(t)=21Mv(t)2
计算系统势能:
E
potential
(
t
)
=
1
2
K
x
(
t
)
2
E_{\text{potential}}(t) = \frac{1}{2} K x(t)^2
Epotential(t)=21Kx(t)2
系统的总能量:
E
(
t
)
=
E
kinetic
(
t
)
+
E
potential
(
t
)
E(t) = E_{\text{kinetic}}(t) + E_{\text{potential}}(t)
E(t)=Ekinetic(t)+Epotential(t)
2.计算累积输入能量
通过对输入功率进行时间积分得到累积输入能量 ∫ t 0 t P i n p u t ( τ ) d τ \int_{t_0}^{t} P_{input}(\tau) \, d\tau ∫t0tPinput(τ)dτ
其中 P i n p u t ( t ) = F ( t ) ⋅ v ( t ) P_{input}(t) =F(t) \cdot v(t) Pinput(t)=F(t)⋅v(t)
3.比较系统能量变化和累积输入能量
在每个时刻
t
t
t,计算系统能量的变化
Δ
E
(
t
)
\Delta E(t)
ΔE(t),并验证无源性条件:
Δ
E
(
t
)
=
E
(
t
)
−
E
(
t
0
)
≤
∫
t
0
t
P
input
(
τ
)
d
τ
.
\Delta E(t) = E(t) - E(t_0) \leq \int_{t_0}^{t} P_{\text{input}}(\tau) \, d\tau.
ΔE(t)=E(t)−E(t0)≤∫t0tPinput(τ)dτ.
4.根据判定结果调整控制参数
如果系统能量的变化量 Δ E ( t ) \Delta E(t) ΔE(t) 超过累积输入能量,则系统可能不是无源的。此时应调整控制参数以确保系统重新满足无源性条件。
总结
简单对利用导纳进行拖动示教的人机交互进行了介绍,具体基于无源性条件进行自适应导纳控制系统的搭建并未涉及,待日后补充。