方法一:后序遍历(DFS)
树的后序遍历 / 深度优先搜索往往利用 递归 或 栈 实现,本文使用递归实现。
关键点: 此树的深度和其左(右)子树的深度之间的关系。显然,此树的深度 等于 左子树的深度 与 右子树的深度 中的 最大值 +1 。
终止条件: 当 root 为空,说明已越过叶节点,因此返回 深度 0。
递推工作: 本质上是对树做后序遍历。
计算节点 root 的 左子树的深度 ,即调用 maxDepth(root.left);
计算节点 root 的 右子树的深度 ,即调用 maxDepth(root.right);
返回值: 返回 此树的深度 ,即 max(maxDepth(root.left), maxDepth(root.right)) + 1。
class Solution {
public:
int maxDepth(TreeNode* root) {
if(root==NULL)
{
return NULL;
}
return max(maxDepth(root->left)+1,maxDepth(root->right)+1);
}
};
复杂度分析:
时间复杂度 O(N) : N为树的节点数量,计算树的深度需要遍历所有节点。
空间复杂度 O(N) : 最差情况下(当树退化为链表时),递归深度可达到N。
方法二:层序遍历(BFS)
树的层序遍历 / 广度优先搜索往往利用 队列 实现。
关键点: 每遍历一层,则计数器 +1 ,直到遍历完成,则可得到树的深度。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
// 特例处理: 当 root 为空,直接返回 深度 0 。
// 初始化: 队列 queue (加入根节点 root ),计数器 res = 0。
// 循环遍历: 当 queue 为空时跳出。
// 初始化一个空列表 tmp ,用于临时存储queue的头结点;
// 遍历队列: 遍历 queue 中的各节点 temp ,并将其左子节点和右子节点加入 queue中;
// 统计层数: 执行 res += 1 ,代表层数;
// 返回值: 返回 res 即可。
#include "queue"
class Solution{
public:
int maxDepth(TreeNode*root)
{
if(root==NULL)//当 root 为空,直接返回 深度 0 。
{
return 0;
}
//初始化: 队列 queue (加入根节点 root ),计数器 res = 0。
queue<TreeNode*>q;
q.push(root);
int res=0;
while(!q.empty())//循环遍历: 当 queue 为空时跳出。
{
res+=1;
int count=q.size();//记录每层的节点个数
while(count--)//遍历每层的每个节点
{
TreeNode*temp=q.front();//初始化一个空列表 tmp;
q.pop();
if(temp->left){//将temp的左右节点加入queue中
q.push(temp->left);
}
if(temp->right)
{
q.push(temp->right);
}
}
}
return res;
}
};
复杂度分析:
时间复杂度 O(N): N 为树的节点数量,计算树的深度需要遍历所有节点。
空间复杂度 O(N) : 最差情况下(当树平衡时),队列 queue 同时存储 N/2 个节点。
参考链接:https://leetcode-cn.com/problems/er-cha-shu-de-shen-du-lcof/solution/mian-shi-ti-55-i-er-cha-shu-de-shen-du-xian-xu-bia/