① 熵/Entropy/EN
熵表示一张图像包含信息的丰富程度。公式如下:
H = − ∑ i = 0 L − 1 p i log 2 p i H=-\sum_{i=0}^{L-1}p_i\log_2p_i H=−i=0∑L−1pilog2pi
| 熵的变化 | 意义 |
|---|---|
| ↑ ↑ ↑ | 图像包含信息更多。 |
| ↓ ↓ ↓ | 图像包含信息更少。 |
对于一张灰度图,像素的取值为0-255,那么 L = 256 L=256 L=256。 p i p_i pi表示灰度值为 i i i的概率,可以由灰度值为 i i i的像素个数 N i N_i Ni与所有像素数目 N N N之比计算,即 p i = N i N p_i=\frac{N_i}{N} pi=NNi。对于RGB图像一般是将其转为灰度图再计算熵。
② 交叉熵/Cross Entropy/CE
交叉熵表示生成图像与源图像信息的差异。其中 A A A是源图像, B B B是生成图像,公式如下:
C E A , B = ∑ i = 0 L − 1 p A i log p A i p B i CE_{A,B}=\sum_{i=0}^{L-1}p_{Ai}\log\frac{p_{Ai}}{p_{Bi}} CEA,B=i=0∑L−1pAilogpBipAi
| 交叉熵的变化 | 意义 |
|---|---|
| ↑ ↑ ↑ | 生成图像与源图像差异更大。 |
| ↓ ↓ ↓ | 生成图像与源图像差异更小。 |
如果源图像有多张,例如可见光与红外图像的融合,由两张源图像 A 、 B A、B A、B生成一张图像 F F F则:
C E A , F = ∑ i = 0 L − 1 p A i log p A i p F i C E B , F = ∑ i = 0 L − 1 p B i log p B i p F i CE_{A,F}=\sum_{i=0}^{L-1}p_{Ai}\log\frac{p_{Ai}}{p_{Fi}}\\CE_{B,F}=\sum_{i=0}^{L-1}p_{Bi}\log\frac{p_{Bi}}{p_{Fi}} CEA,F=i=0∑L−1pAilogpFipAiCEB,F=i=0∑L−1pBilogpFipBi
可以统一计算平均交叉熵 M C E MCE MCE和均方根平均交叉熵 R C E RCE RCE:
M C E = C E A , F + C E B , F 2 R C E = C E A , F 2 + C E B , F 2 2 MCE=\frac{CE_{A,F}+CE_{B,F}}{2}\\RCE=\sqrt {\frac{CE_{A,F}^2+CE_{B,F}^2}{2}} MCE=2CEA,F+CEB,FRCE=2CEA,F2+CEB,F2
③ 相关熵/Mutual Information/MI
相关熵或相关信息量 M I MI MI是反应生成图像和源图像的像素分布的相似程度。其中 A A A是源图像, B B B是生成图像,公式如下:
M I ( A , B ) = ∑ a = 1 L − 1 ∑ b = 1 L − 1 p B , A ( b , a ) log 2 p B , A ( b , a ) p B ( b ) p A ( a ) MI(A,B)=\sum_{a=1}^{L-1}\sum_{b=1}^{L-1}p_{B,A}(b,a)\log_2\frac{p_{B,A}(b,a)}{p_B(b)p_A(a)} MI(A,B)=

最低0.47元/天 解锁文章
1313

被折叠的 条评论
为什么被折叠?



