源码分析HashMap(JDK 7 & 8 整合对比)

HashMap笔记(JDK 1.7 & JDK 1.8)

内容参考自:(感谢作者,仅学习整合,如侵必删)

Java:手把手带你源码分析 HashMap 1.7

Java源码分析:关于 HashMap 1.8 的重大更新

文章目录

一、简介

1、类定义
public class HashMap<K,V>
         extends AbstractMap<K,V> 
         implements Map<K,V>, Cloneable, Serializable
2、主要介绍

info

二、数据结构(1.7 和1.8 有主要差异)

1、具体描述

1.7 HashMap1.8 HashMap主要不同

1.7 HashMap 采用的数据结构 = 数组(主)+单链表(副),也称拉链法,具体描述如下:

结构描述备注
数组
(主)
- 核心底层 = 1个数组( table[] )
(又称:哈希数组)
- 数组下标 = 进过处理的键key的hash值
(通过hashCode()计算等一系列处理)
- 数组元素 = 1个键值对 = 1个链表(头节点)
- 数组大小 = HashMap的容量(capacity)
单链表
(副)
- 每个链表 = 哈希表的桶(bucket)
- 链表的节点值 = 1个键值对
- 链表的长度 = 桶的大小
- 链表主要用于解决哈希冲突:若不同的key计算出的hash值相同(即都需存放到数组的同一位置),由于之前该hash值的数组位置已经存放元素,则将原先位置的元素移到单链表中,冲突hash值对应的元素放入数组中。
(即 发生冲突时,新元素插入到链表头中:新元素总是添加到数组中,旧元素移到链表中)
- 该采用链表解决hash冲突的方法 = 链地址法
注:HashMap的键值对数量 = 数组的键值对 + 所有单链表的键值对
2、示意图

示意图

1.8 引入了红黑树

示意图

关于 红黑树 了解:http://blog.csdn.net/v_july_v/article/details/6105630

示意图

附:既然红黑树那么好,为啥HashMap不全部采用红黑树?
  • 因为红黑树需要进行左旋,右旋操作, 而单链表不需要。红黑树查询快但新增成本高,链表反之。

整体都是考虑时间和空间的权衡

附:为什么Map桶中个数超过8才转为红黑树?
  • 源码注释得知,理想情况下的hashCode算法一个bin桶中的分布频率符合泊松分布,达到8的概率已经非常小了,所以选择了8。

当hashCode离散性很好的时候,树型bin用到的概率非常小,因为数据均匀分布在每个bin中,几乎不会有bin中链表长度会达到阈值。但是在随机hashCode下,离散性可能会变差,然而JDK又不能阻止用户实现这种不好的hash算法,因此就可能导致不均匀的数据分布。不过理想情况下随机hashCode算法下所有bin中节点的分布频率会遵循泊松分布,我们可以看到,一个bin中链表长度达到8个元素的概率为0.00000006,几乎是不可能事件。

Because TreeNodes are about twice the size of regular nodes, we
use them only when bins contain enough nodes to warrant use
(see TREEIFY_THRESHOLD). And when they become too small (due to
removal or resizing) they are converted back to plain bins.  In
usages with well-distributed user hashCodes, tree bins are
rarely used.  Ideally, under random hashCodes, the frequency of
nodes in bins follows a Poisson distribution
(http://en.wikipedia.org/wiki/Poisson_distribution) with a
parameter of about 0.5 on average for the default resizing
threshold of 0.75, although with a large variance because of
resizing granularity. Ignoring variance, the expected
occurrences of list size k are (exp(-0.5)*pow(0.5, k)/factorial(k)). 
The first values are:
0:    0.60653066
1:    0.30326533
2:    0.07581633
3:    0.01263606
4:    0.00157952
5:    0.00015795
6:    0.00001316
7:    0.00000094
8:    0.00000006
more: less than 1 in ten million
   // 1. 桶的树化阈值:即 链表转成红黑树的阈值,在存储数据时,当链表长度 > 该值时,则将链表转换成红黑树
   static final int TREEIFY_THRESHOLD = 8; 
   // 2. 桶的链表还原阈值:即 红黑树转为链表的阈值,当在扩容(resize())时(此时HashMap的数据存储位置会重新计算),在重新计算存储位置后,当原有的红黑树内数量 < 6时,则将 红黑树转换成链表
   static final int UNTREEIFY_THRESHOLD = 6;
  • 选择6和8,中间有个差值7可以有效防止链表和树频繁转换。
附:为什么使用红黑树而不是AVL树?
  • 红黑树整体统计性能优于AVL树

因为红黑树本身不是完全平衡的二叉树(只是“黑”平衡),所以插入删除性能略高于AVL,但牺牲了查找性能。

而AVL是完全平衡的二叉树,自平衡的计算牺牲了插入删除性能,但是因为最多只有一层的高度差,所以查找效率高些。

对于查找密集型任务,使用AVL树;对于插入密集型任务,使用红黑树。

3、存储流程

1.7

1.8

在这里插入图片描述

4、数组元素 & 链表结点 的实现类
  • 1.7 HashMap中的数组元素 & 链表节点 采用 Entry类 实现

  • 1.8 HashMap中的数组元素 & 链表节点 采用 Node类 实现, 红黑树节点 采用 TreeNode 类 实现

JDK 1.7 的对比(Entry类),仅仅只是换了名字

三、具体使用

1、主要使用API(1.7和1.8基本相同)
V get(Object key); // 获得指定键的值
V put(K key, V value);  // 添加键值对
void putAll(Map<? extends K, ? extends V> m);  // 将指定Map中的键值对 复制到 此Map中
V remove(Object key);  // 删除该键值对

boolean containsKey(Object key); // 判断是否存在该键的键值对;是 则返回true
boolean containsValue(Object value);  // 判断是否存在该值的键值对;是 则返回true
 
Set<K> keySet();  // 单独抽取key序列,将所有key生成一个Set
Collection<V> values();  // 单独value序列,将所有value生成一个Collection

void clear(); // 清除哈希表中的所有键值对
int size();  // 返回哈希表中所有 键值对的数量 = 数组中的键值对 + 链表中的键值对
boolean isEmpty(); // 判断HashMap是否为空;size == 0时 表示为 空 
2、使用流程(7和8基本相同)
  • 在具体使用时,主要流程是:
  1. 声明1个 HashMap的对象
  2. HashMap 添加数据(成对 放入 键 - 值对)
  3. 获取 HashMap 的某个数据
  4. 获取 HashMap 的全部数据:遍历HashMap

四、基础知识:HashMap中的重要参数(7&8基本相同)

HashMap的主要参数:容量(capacity)、加载因子(loadFactor)、扩容阈值(threshold)

1.8 由于数据结构中引入了 红黑树,故加入了 与红黑树相关的参数。具体介绍如下:

/** 
   * JDK 1.8
   * 主要参数 同  JDK 1.7 
   * 即:容量、加载因子、扩容阈值(要求、范围均相同)
   */

// 1. 容量(capacity)HashMap中的数组长度
// a. 容量范围:必须是2的幂 & < 最大容量(2的30次方)
// b. 初始容量 = 哈希表创建时的容量
  static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // 默认容量 = 16 = 1<<4 = 00001中的1向左移4位 = 10000 = 十进制的2^4=16
  static final int MAXIMUM_CAPACITY = 1 << 30; // 最大容量 =  2的30次方(若传入的容量过大,将被最大值替换)

// 2. 加载因子(loadFactor):HashMap在其容量扩容前可到达多满的一种尺度
// a. 加载因子越大,填满的元素越多 = 空间利用率高,但冲突的机会变大,查找效率变低(因为链表变长了)
// b. 加载因子越小,填满的元素越少 = 空间利用率小,冲突的机会变小,查找效率变高(链表变短)
  final float loadFactor; // 实际加载因子
  static final float DEFAULT_LOAD_FACTOR = 0.75f; // 默认加载因子 = 0.75

// 3. 扩容阈值(threshold):当哈希表的大小 ≥ 扩容阈值是,就会扩容哈希表(即capacity)
// a. 扩容 = 对哈希表进行resize操作(即重建内部数据结构),从而哈希表将具有大约两倍的桶数
// b. 扩容阈值 = 容量 × 加载因子
  int threshold;

// 4. 其他
  transient Node<K,V>[] table; // 存储数据的Node类型 数组,长度 = 2的幂;数组的每个元素 = 1个单链表
  transient int size;// HashMap的大小,即 HashMap中存储的键值对的数量

  /** 
   * 与红黑树相关的参数
   */
   // 1. 桶的树化阈值:即 链表转成红黑树的阈值,在存储数据时,当链表长度 > 该值时,则将链表转换成红黑树
   static final int TREEIFY_THRESHOLD = 8; 
   // 2. 桶的链表还原阈值:即 红黑树转为链表的阈值,当在扩容(resize())时(此时HashMap的数据存储位置会重新计算),在重新计算存储位置后,当原有的红黑树内数量 < 6时,则将 红黑树转换成链表
   static final int UNTREEIFY_THRESHOLD = 6;
   // 3. 最小树形化容量阈值:即 当哈希表中的容量 > 该值时,才允许树形化链表 (即 将链表 转换成红黑树)
   // 否则,若桶内元素太多时,则直接扩容,而不是树形化
   // 为了避免进行扩容、树形化选择的冲突,这个值不能小于 4 * TREEIFY_THRESHOLD
   static final int MIN_TREEIFY_CAPACITY = 64;
容量 capacity 必须是2的幂

如果传入的capacity不是2的幂, 这个运算的结果是比我们传入的参数要大,而且是离我们传入的参数最近的2的幂的数。

为什么大小必须是2的幂?

  • 原因有两点:1.加快哈希运算 2.减少哈希冲突
  1. 加快哈希运算:hash &(length - 1),因为 位运算与 & 比 逻辑运算取模 % 快一点点点

  2. 保证数据分散,减少哈希冲突: 使用2的幂为长度,则length-1后为奇数,该奇数转为2进制后最后一位肯定是1。 这样奇偶由hash值决定。否则,length-1后为偶数的话,最后一位是0,& hash都是偶数。

加载因子(DEFAULT_LOAD_FACTOR = 0.75f)

很小概率问道为什么是 0.75?若问答下

  1. 源码注释:时间和空间的平衡
<p>As a general rule, the default load factor (.75) offers a good* tradeoff between time and space costs.
  1. 一个bucket空和非空的概率为0.5,通过牛顿二项式等数学计算,得到这个loadfactor的值为log(2),约等于0.693。取0.75应该是方便计算。

参考 What is the significance of load factor in HashMap?

示意图

五、源码分析

  • 本次的源码分析主要是根据 使用步骤 进行相关函数的详细分析
  • 主要分析内容如下:

示意图

1、步骤1:声明一个HashMap的对象

/**
  * 函数使用原型
  */
  Map<String,Integer> map = new HashMap<String,Integer>();

 /**
   * 源码分析:主要是HashMap的构造函数 = 4个
   * 仅贴出关于HashMap构造函数的源码
   */
  public class HashMap<K,V>
      extends AbstractMap<K,V>
      implements Map<K,V>, Cloneable, Serializable{

    // 省略上节阐述的参数
    
  /**
     * 构造函数1:默认构造函数(无参)
     * 加载因子 & 容量 = 默认 = 0.75、16
     */
    public HashMap() {
        // 实际上是调用构造函数3:指定“容量大小”和“加载因子”的构造函数
        // 传入的指定容量 & 加载因子 = 默认
        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR); 
    }

    /**
     * 构造函数2:指定“容量大小”的构造函数
     * 加载因子 = 默认 = 0.75 、容量 = 指定大小
     */
    public HashMap(int initialCapacity) {
        // 实际上是调用指定“容量大小”和“加载因子”的构造函数
        // 只是在传入的加载因子参数 = 默认加载因子
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
        
    }

    /**
     * 构造函数3:指定“容量大小”和“加载因子”的构造函数
     * 加载因子 & 容量 = 自己指定
     */
    public HashMap(int initialCapacity, float loadFactor) {

        // HashMap的最大容量只能是MAXIMUM_CAPACITY,哪怕传入的 > 最大容量
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;

        // 设置 加载因子
        this.loadFactor = loadFactor;
        // 设置 扩容阈值 = 初始容量
        // 注:此处不是真正的阈值,是为了扩展table,该阈值后面会重新计算,下面会详细讲解  
        threshold = initialCapacity;   

        init(); // 一个空方法用于未来的子对象扩展
    }

    /**
     * 构造函数4:包含“子Map”的构造函数
     * 即 构造出来的HashMap包含传入Map的映射关系
     * 加载因子 & 容量 = 默认
     */

    public HashMap(Map<? extends K, ? extends V> m) {

        // 设置容量大小 & 加载因子 = 默认
        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
                DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);

        // 该方法用于初始化 数组 & 阈值,下面会详细说明
        inflateTable(threshold);

        // 将传入的子Map中的全部元素逐个添加到HashMap中
        putAllForCreate(m);
    }
}

1.8 不同

   /**
     * 分析1:tableSizeFor(initialCapacity)
     * 作用:将传入的容量大小转化为:>传入容量大小的最小的2的幂
     * 与JDK 1.7对比:类似于JDK 1.7 中 inflateTable()里的 roundUpToPowerOf2(toSize)
     */
    static final int tableSizeFor(int cap) {
     int n = cap - 1;
     n |= n >>> 1;
     n |= n >>> 2;
     n |= n >>> 4;
     n |= n >>> 8;
     n |= n >>> 16;
     return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
  • 注:(同JDK 1.7类似)
    1. 此处仅用于接收初始容量大小(capacity)、加载因子(Load factor),但仍无真正初始化哈希表,即初始化存储数组table
    2. 此处先给出结论:真正初始化哈希表(初始化存储数组table)是在第1次添加键值对时,即第1次调用put()时。下面会详细说明

2、步骤2:向HashMap添加数据(成对 放入 键 - 值对)(7&8主要差异)

版本初始化方式hash值的计算方式存放数据的规则插入数据的方式扩容后存储位置的计算方式
JDK 1.7单独函数:infalteTable()1.hashCode()
2.扰动处理 = 9次扰动 = 4次位运算 + 5次异或运算

数组、链表

- 无冲突时,存放在数组
- 有冲突时,存放在链表
头插法
(先将原位置的数据移到后一位,再插入数据到该位置)
全部按照原来的方法计算
(即 hashCode() ->> 扰动处理 ->> (h & length - 1) )
JDK 1.8直接集成在扩容函数:resize()1.hashCode()
2.扰动处理 = 2次扰动 = 1次位运算 + 1次异或运算

数组、链表、红黑树

- 无冲突时,存放数组
- 有冲突 & 链表长度 < 8时,存放链表
- 有冲突 & 链表长度 > 8时,存放红黑树
尾插法
(直接插入到链表尾部 / 红黑树)
按照扩容后的规律计算
(即 扩容后的位置 = 原位置 or 原位置 + 旧容量 )
  • 1.7 添加数据的流程如下

示意图

   /**
     * 源码分析:主要分析: HashMap的put函数
     */
    public V put(K key, V value)
        // 1. 若 哈希表未初始化(即 table为空) 
        // 则使用 构造函数时设置的阈值(即初始容量) 初始化 数组table  
        if (table == EMPTY_TABLE) { 
        inflateTable(threshold); 
    }  
        // 2. 判断key是否为空值null
        // 2.1 若key == null,则将该键-值 存放到数组table 中的第1个位置,即table [0]
        // (本质:key = Null时,hash值 = 0,故存放到table[0]中)
        // 该位置永远只有1个value,新传进来的value会覆盖旧的value
        if (key == null)
            return putForNullKey(value);

        // 2.2 若 key ≠ null,则计算存放数组 table 中的位置(下标、索引)
        // a. 根据键值key计算hash值
        int hash = hash(key);
        // b. 根据hash值 最终获得 key对应存放的数组Table中位置
        int i = indexFor(hash, table.length);

        // 3. 判断该key对应的值是否已存在(通过遍历 以该数组元素为头结点的链表 逐个判断)
        for (Entry<K,V> e = table[i]; e != null; e = e.next) {
            Object k;
        // 3.1 若该key已存在(即 key-value已存在 ),则用 新value 替换 旧value
            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
                V oldValue = e.value;
                e.value = value;
                e.recordAccess(this);
                return oldValue; //并返回旧的value
            }
        }

        modCount++;

        // 3.2 若 该key不存在,则将“key-value”添加到table中
        addEntry(hash, key, value, i);
        return null;
    }
  • 1.8 添加数据的流程如下

示意图

   /**
     * 源码分析:主要分析HashMap的put函数
     */
    public V put(K key, V value) {
        // 1. 对传入数组的键Key计算Hash值 ->>分析1
        // 2. 再调用putVal()添加数据进去 ->>分析2
        return putVal(hash(key), key, value, false, true);
    }
分析1:hash(key)!!7&8差异
   /**
     * 分析1:hash(key)
     * 作用:计算传入数据的哈希码(哈希值、Hash值)
     * 该函数在JDK 1.7 和 1.8 中的实现不同,但原理一样 = 扰动函数 = 使得根据key生成的哈希码(hash值)分布更加均匀、更具备随机性,避免出现hash值冲突(即指不同key但生成同1个hash值)
     * JDK 1.7 做了9次扰动处理 = 4次位运算 + 5次异或运算
     * JDK 1.8 简化了扰动函数 = 只做了2次扰动 = 1次位运算 + 1次异或运算
     */

      // JDK 1.7实现:将 键key 转换成 哈希码(hash值)操作  = 使用hashCode() + 4次位运算 + 5次异或运算(9次扰动)
      static final int hash(int h) {
        h ^= k.hashCode(); 
        h ^= (h >>> 20) ^ (h >>> 12);
        return h ^ (h >>> 7) ^ (h >>> 4);
     }

      // JDK 1.8实现:将 键key 转换成 哈希码(hash值)操作 = 使用hashCode() + 1次位运算 + 1次异或运算(2次扰动)
      // 1. 取hashCode值: h = key.hashCode() 
      // 2. 高位参与低位的运算:h ^ (h >>> 16)  
      static final int hash(Object key) {
           int h;
            return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
            // a. 当key = null时,hash值 = 0,所以HashMap的key 可为null      
            // 注:对比HashTable,HashTable对key直接hashCode(),若key为null时,会抛出异常,所以HashTable的key不可为null
            // b. 当key ≠ null时,则通过先计算出 key的 hashCode()(记为h),然后 对哈希码进行 扰动处理: 按位 异或(^) 哈希码自身右移16位后的二进制
     }

   /**
     * 计算存储位置的函数分析:indexFor(hash, table.length)
     * 注:该函数仅存在于JDK 1.7 ,JDK 1.8中实际上无该函数(在putVal()中判断写出),但原理相同
     * 为了方便讲解,故提前到此讲解
     */
     static int indexFor(int h, int length) {  
          return h & (length-1); 
          // 将对哈希码扰动处理后的结果 与运算(&) (数组长度-1),最终得到存储在数组table的位置(即数组下标、索引)
     }
  • 总结 计算存放在数组 table 中的位置(即数组下标、索引)的过程
  1. 此处与 JDK 1.7的区别在于:hash值的求解过程中 哈希码的二次处理方式(扰动处理)
  2. 步骤1、2 = hash值的求解过程
步骤代码实现具体实现过程
1.计算哈希码h = key.hashCode()根据键key,通过hashCode()计算

hashCode()简介
- 定义:Object类的方法,即所有Java对象都可以调用
- 作用:根据对象的内存地址 通过特点算法 返回一个哈希码
- 意义:保证每个对象的哈希码尽可能不同,从而提高在散列结构存储中查找效率
- 注:可重写,Object类提供的默认实现确保每个对象的hash吗不同

2.二次处理哈希码
(最终求得 键对应的hash值)
h ^ (h >>> 16)- 该处理也称 扰动处理
-即 哈希码 异或(^) 哈希码自身右移16位后的二进制
-本质:二次处理低位 = 哈希码的高16位不变、低16位 = 低16位 异或 高16位
(即 高位参与低位的运算)
3.最终计算存储的数组位置
(根据hash值 & 数组长度)
h & (length - 1)二次处理的哈希码 与运算(&) (数组长度-1)
  • 计算示意图

img

在了解 如何计算存放数组table 中的位置 后,所谓 知其然 而 需知其所以然,下面我将讲解为什么要这样计算,即主要解答以下3个问题:

  1. 为什么不直接采用经过hashCode()处理的哈希码 作为 存储数组table的下标位置?
  2. 为什么采用 哈希码 与运算(&) (数组长度-1) 计算数组下标?
  3. 为什么在计算数组下标前,需对哈希码进行二次处理:扰动处理?

在回答这3个问题前,请大家记住一个核心思想:

所有处理的根本目的,都是为了提高 存储key-value的数组下标位置的 随机性 & 分布均匀性,尽量避免哈希冲突。即 对于不同的key,存储的数组下标位置尽量不一样。

问题1:为什么不直接采用经过hashCode()处理的哈希码 作为 存储数组table的下标位置?
  • 结论:容易出现 哈希码 与数组大小不匹配的情况,即 计算出来的哈希码 不在数组大小范围内,从而导致无法匹配存储位置。
  • 原因如下图

示意图

  • 为了解决 ”哈希码与数组大小不匹配“ 的问题,HashMap给的解决方案:哈希码 与运算(&) (数组长度-1)
  • 引出问题2
问题2:为什么采用 哈希码 与运算(&) (数组长度-1) 计算数组下标?
  • 结论:根据HashMap的容量大小(数组长度),按需取哈希码一定数量的低位作为存储的数组下标,从而解决 “ 哈希码与数组大小范围不匹配 ” 的问题

  • 具体描述如下图

    img

问题3:为什么在计算数组下标前,需对哈希码进行二次处理:扰动处理?
  • 结论:加大哈希码低位的随机性,使得分布更均匀,从而提高对数组存储下标位置的 随机性&均匀性,最终减少哈希冲突。

  • 具体如下图

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-gc8NHlES-1584256511041)(C:\Users\Kevin\AppData\Roaming\Typora\typora-user-images\1584083041918.png)]

至此,关于怎么计算 key-value 值存储在HashMap数组位置 & 为什么要这么计算,讲解完毕。

分析2:putVal(hash(key), key, value, false, true);

此处有2个主要讲解点:

  • 计算完存储位置后,具体该如何 存放数据 到哈希表中
  • 具体如何扩容,即扩容机制
主要讲解点1:计算完存储位置后,具体该如何存放数据到哈希表中

由于数据结构中加入了红黑树,所以在存放数据到哈希表中时,需多次数据结构的判断:数组、红黑树、链表

与JDK 1.7的区别,1.7只需要判断数组和链表

示意图

   /**
     * 分析2:putVal(hash(key), key, value, false, true)
     */
     final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {

    		Node<K,V>[] tab; Node<K,V> p; int n, i;

    	// 1. 若哈希表的数组tab为空,则 通过resize() 创建
    	// 所以,初始化哈希表的时机 = 第1次调用put函数时,即调用resize() 初始化创建
    	// 关于resize()的源码分析将在下面讲解扩容时详细分析,此处先跳过
   		if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;

    	// 2. 计算插入存储的数组索引i:根据键值key计算的hash值 得到
    	// 此处的数组下标计算方式 = i = (n - 1) & hash,同JDK 1.7中的indexFor(),上面已详细描述

    	// 3. 插入时,需判断是否存在Hash冲突:
    	// 若不存在(即当前table[i] == null),则直接在该数组位置新建节点,插入完毕
    	// 否则,代表存在Hash冲突,即当前存储位置已存在节点,则依次往下判断:a. 当前位置的key是否与需插入的key相同、b. 判断需插入的数据结构是否为红黑树 or 链表
    	if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);  // newNode(hash, key, value, null)的源码 = new Node<>(hash, key, value, next)

    else {
        Node<K,V> e; K k;

        // a. 判断 table[i]的元素的key是否与 需插入的key一样,若相同则 直接用新value 覆盖 旧value
        // 判断原则:equals()
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;

        // b. 继续判断:需插入的数据结构是否为红黑树 or 链表
        // 若是红黑树,则直接在树中插入 or 更新键值对
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); ->>分析3

        // 若是链表,则在链表中插入 or 更新键值对
        // i.  遍历table[i],判断Key是否已存在:采用equals() 对比当前遍历节点的key 与 需插入数据的key:若已存在,则直接用新value 覆盖 旧value
        // ii. 遍历完毕后仍无发现上述情况,则直接在链表尾部插入数据
        // 注:新增节点后,需判断链表长度是否>8(8 = 桶的树化阈值):若是,则把链表转换为红黑树
        
        else {
            for (int binCount = 0; ; ++binCount) {
            	// 对于ii:若数组的下1个位置,表示已到表尾也没有找到key值相同节点,则新建节点 = 插入节点
            	// 注:此处是从链表尾插入,与JDK 1.7不同(从链表头插入,即永远都是添加到数组的位置,原来数组位置的数据则往后移)
                if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null);

                    // 插入节点后,若链表节点>数阈值,则将链表转换为红黑树
                    if (binCount >= TREEIFY_THRESHOLD - 1) 
                        treeifyBin(tab, hash); // 树化操作
                    break;
                }

                // 对于i
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;

                // 更新p指向下一个节点,继续遍历
                p = e;
            }
        }

        // 对i情况的后续操作:发现key已存在,直接用新value 覆盖 旧value & 返回旧value
        if (e != null) { 
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e); // 替换旧值时会调用的方法(默认实现为空)
            return oldValue;
        }
    }

    ++modCount;

    // 插入成功后,判断实际存在的键值对数量size > 最大容量threshold
    // 若 > ,则进行扩容 ->>分析4(但单独讲解,请直接跳出该代码块)
    if (++size > threshold)
        resize();

    afterNodeInsertion(evict);// 插入成功时会调用的方法(默认实现为空)
    return null;

}

	/**
     * 分析3:putTreeVal(this, tab, hash, key, value)
     * 作用:向红黑树插入 or 更新数据(键值对)
     * 过程:遍历红黑树判断该节点的key是否与需插入的key 相同:
     *      a. 若相同,则新value覆盖旧value
     *      b. 若不相同,则插入
     */

     final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
                                       int h, K k, V v) {
            Class<?> kc = null;
            boolean searched = false;
            TreeNode<K,V> root = (parent != null) ? root() : this;
            for (TreeNode<K,V> p = root;;) {
                int dir, ph; K pk;
                if ((ph = p.hash) > h)
                    dir = -1;
                else if (ph < h)
                    dir = 1;
                else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                    return p;
                else if ((kc == null &&
                          (kc = comparableClassFor(k)) == null) ||
                         (dir = compareComparables(kc, k, pk)) == 0) {
                    if (!searched) {
                        TreeNode<K,V> q, ch;
                        searched = true;
                        if (((ch = p.left) != null &&
                             (q = ch.find(h, k, kc)) != null) ||
                            ((ch = p.right) != null &&
                             (q = ch.find(h, k, kc)) != null))
                            return q;
                    }
                    dir = tieBreakOrder(k, pk);
                }

                TreeNode<K,V> xp = p;
                if ((p = (dir <= 0) ? p.left : p.right) == null) {
                    Node<K,V> xpn = xp.next;
                    TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
                    if (dir <= 0)
                        xp.left = x;
                    else
                        xp.right = x;
                    xp.next = x;
                    x.parent = x.prev = xp;
                    if (xpn != null)
                        ((TreeNode<K,V>)xpn).prev = x;
                    moveRootToFront(tab, balanceInsertion(root, x));
                    return null;
                }
            }
        }
  • 总结

示意图

主要讲解点2:扩容机制(即 resize()函数)
  • 扩容流程如下图

示意图

  • 源码分析
   /**
     * 分析4:resize()
     * 该函数有2种使用情况:1.初始化哈希表 2.当前数组容量过小,需扩容
     */
   final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table; // 扩容前的数组(当前数组)
    int oldCap = (oldTab == null) ? 0 : oldTab.length; // 扩容前的数组的容量 = 长度
    int oldThr = threshold;// 扩容前的数组的阈值
    int newCap, newThr = 0;

    // 针对情况2:若扩容前的数组容量超过最大值,则不再扩充
    if (oldCap > 0) {
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }

        // 针对情况2:若无超过最大值,就扩充为原来的2倍
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // 通过右移扩充2倍
    }

    // 针对情况1:初始化哈希表(采用指定 or 默认值)
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;

    else {               // zero initial threshold signifies using defaults
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }

    // 计算新的resize上限
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }

    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;

    if (oldTab != null) {
        // 把每个bucket都移动到新的buckets中
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;

                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);

                else { // 链表优化重hash的代码块
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;
                        // 原索引
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        // 原索引 + oldCap
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    // 原索引放到bucket里
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    // 原索引+oldCap放到bucket里
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}
  • 扩容流程(含 与 JDK 1.7 的对比)

示意图

常考点:1.7 链表 死循环 问题
  • 原因结论:1.7 的转移数据方式是头插法(头插法方便,并且由于局部性原理,考虑到最近添加的最可能被访问),在数据扩容后容易出现链表逆序的情况,在多线程并发下,容易出现 环形链表, 从而在获取数据、遍历链表时形成死循环Infinite Loop),即 死锁的状态 。

详细参看此文:疫苗:JAVA HASHMAP的死循环

先看源码
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FKyVak9R-1584256511043)(E:\学习资源\Notes\HashMap\1584109997623.png)]
问题所在 transfer
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Hxt0msdu-1584256511043)(E:\学习资源\Notes\HashMap\1584109962840.png)]
单线程正常 rehash 如下:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-YXmTsgEh-1584256511045)(E:\学习资源\Notes\HashMap\HashMap01.jpg)]

多线程并发下的 rehash,可能出现死循环!

**1)假设我们有两个线程。**我用红色和浅蓝色标注了一下。

我们再回头看一下我们的 transfer代码中的这个细节:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-bxjbLeNZ-1584256511046)(E:\学习资源\Notes\HashMap\1584110173630.png)]

而我们的线程二执行完成了。于是我们有下面的这个样子。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-PNtfgBdh-1584256511047)(E:\学习资源\Notes\HashMap\HashMap02.jpg)]

注意,因为Thread1的 e 指向了key(3),而next指向了key(7),其在线程二rehash后,指向了线程二重组后的链表。我们可以看到链表的顺序被反转后。

2)线程一被调度回来执行

  • 先是执行 newTalbe[i] = e;
  • 然后是e = next,导致了e指向了key(7),
  • 而下一次循环的next = e.next导致了next指向了key(3)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-l4wPsAyg-1584256511048)(E:\学习资源\Notes\HashMap\HashMap03.jpg)]

3)一切安好

线程一接着工作。把key(7)摘下来,放到newTable[i]的第一个,然后把e和next往下移
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-f4pu9Omi-1584256511049)(E:\学习资源\Notes\HashMap\HashMap04.jpg)]

4)环形链接出现

e.next = newTable[i] 导致 key(3).next 指向了 key(7)

注意:此时的key(7).next 已经指向了key(3), 环形链表就这样出现了。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-41PmjdUp-1584256511050)(E:\学习资源\Notes\HashMap\HashMap05.jpg)]

于是,当我们的线程一调用到,HashTable.get(11)时,悲剧就出现了——Infinite Loop。 CPU100%, 查看堆栈,你会发现程序都Hang在了HashMap.get()这个方法上

  • 注:由于 JDK 1.8 转移数据操作 = 按旧链表的正序遍历链表、在新链表的尾部依次插入,所以不会出现链表 逆序、倒置的情况,故不容易出现环形链表的情况。

    JDK 1.8 还是线程不安全,因为 无加同步锁保护

1.8 扩容时,数据存储位置重新计算的方式
  • 计算结论 & 原因解析

示意图

  • 结论示意图

示意图

总结
  • 添加数据的流程

示意图

  • 7&8 区别
添加数据时
版本初始化方式hash值的计算方式存放数据的位置判断插入数据方式
JDK 1.7单独函数:inflateTable()1.hashCode()
2.扰动处理 = 9次扰动 = 4次位运算 + 5次异或运算
数组、链表头插法
(先将原位置的数据移到后一位,再插入数据到该位置)
JDK 1.8直接集成在函数:resize()1.hashCode()
2.扰动处理 = 2次扰动 = 1次位运算 + 1次异或运算
数组、链表、红黑树尾插法
(直接插入到链表尾部/红黑树)
扩容机制
版本扩容后存储位置的计算方式转移数据方式需插入数据的插入时机&位置重计算时机
JDK 1.7全部按照原来的方法进行计算
(即 hashCode() ->> 扰动处理 ->> (h & length-1))
头插法
(先将原位置的数据移到后一位,再插入数据到该位置)
扩容后计算、单独计算(即 转移数据时无统一计算)
JDK 1.8按照扩容后的规律计算
(即 扩容后的位置 = 原位置 or 原位置 + 旧容量)
尾插法
(直接插入到链表尾部/红黑树)
扩容前计算、转移数据时统一计算

至此,关于 HashMap的添加数据源码分析 分析完毕。

3、步骤3:从HashMap中获取数据

  • 假如理解了上述put()函数的原理,那么get()函数非常好理解,因为二者的过程原理几乎相同
  • get()函数的流程如下:

示意图

/**
   * 函数原型
   * 作用:根据键key,向HashMap获取对应的值
   */ 
   map.get(key)/**
   * 源码分析
   */ 
   public V get(Object key) {
    Node<K,V> e;
    // 1. 计算需获取数据的hash值
    // 2. 通过getNode()获取所查询的数据 ->>分析1
    // 3. 获取后,判断数据是否为空
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}

/**
   * 分析1:getNode(hash(key), key))
   */ 
final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;

    // 1. 计算存放在数组table中的位置
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {

        // 4. 通过该函数,依次在数组、红黑树、链表中查找(通过equals()判断)
        // a. 先在数组中找,若存在,则直接返回
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;

        // b. 若数组中没有,则到红黑树中寻找
        if ((e = first.next) != null) {
            // 在树中get
            if (first instanceof TreeNode)
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);

            // c. 若红黑树中也没有,则通过遍历,到链表中寻找
            do {
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}

至此,关于 “向 HashMap 获取数据 “讲解完毕。

4、步骤4:对HashMap的其他操作

  • HashMap除了核心的put()get()函数,还有以下主要使用的函数方法
void clear(); // 清除哈希表中的所有键值对
int size();  // 返回哈希表中所有 键值对的数量 = 数组中的键值对 + 链表中的键值对
boolean isEmpty(); // 判断HashMap是否为空;size == 0时 表示为 空 

void putAll(Map<? extends K, ? extends V> m);  // 将指定Map中的键值对 复制到 此Map中
V remove(Object key);  // 删除该键值对

boolean containsKey(Object key); // 判断是否存在该键的键值对;是 则返回true
boolean containsValue(Object value);  // 判断是否存在该值的键值对;是 则返回true

这些方法比较简单就不详细叙述。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值