HashMap笔记(JDK 1.7 & JDK 1.8)
内容参考自:(感谢作者,仅学习整合,如侵必删)
文章目录
一、简介
1、类定义
public class HashMap<K,V>
extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable
2、主要介绍
二、数据结构(1.7 和1.8 有主要差异)
1、具体描述
1.7 HashMap 和 1.8 HashMap 有 主要不同
1.7 HashMap 采用的数据结构 = 数组(主)+单链表(副),也称拉链法,具体描述如下:
结构 | 描述 | 备注 |
---|---|---|
数组 (主) | - 核心底层 = 1个数组( table[] ) (又称:哈希数组) - 数组下标 = 进过处理的键key的hash值 (通过hashCode()计算等一系列处理) - 数组元素 = 1个键值对 = 1个链表(头节点) - 数组大小 = HashMap的容量(capacity) | |
单链表 (副) | - 每个链表 = 哈希表的桶(bucket) - 链表的节点值 = 1个键值对 - 链表的长度 = 桶的大小 | - 链表主要用于解决哈希冲突:若不同的key计算出的hash值相同(即都需存放到数组的同一位置),由于之前该hash值的数组位置已经存放元素,则将原先位置的元素移到单链表中,冲突hash值对应的元素放入数组中。 (即 发生冲突时,新元素插入到链表头中:新元素总是添加到数组中,旧元素移到链表中) - 该采用链表解决hash冲突的方法 = 链地址法 |
注:HashMap的键值对数量 = 数组的键值对 + 所有单链表的键值对 |
2、示意图
1.8 引入了红黑树
关于 红黑树 了解:http://blog.csdn.net/v_july_v/article/details/6105630
附:既然红黑树那么好,为啥HashMap不全部采用红黑树?
- 因为红黑树需要进行左旋,右旋操作, 而单链表不需要。红黑树查询快但新增成本高,链表反之。
整体都是考虑时间和空间的权衡
附:为什么Map桶中个数超过8才转为红黑树?
- 源码注释得知,理想情况下的hashCode算法一个bin桶中的分布频率符合泊松分布,达到8的概率已经非常小了,所以选择了8。
当hashCode离散性很好的时候,树型bin用到的概率非常小,因为数据均匀分布在每个bin中,几乎不会有bin中链表长度会达到阈值。但是在随机hashCode下,离散性可能会变差,然而JDK又不能阻止用户实现这种不好的hash算法,因此就可能导致不均匀的数据分布。不过理想情况下随机hashCode算法下所有bin中节点的分布频率会遵循泊松分布,我们可以看到,一个bin中链表长度达到8个元素的概率为0.00000006,几乎是不可能事件。
Because TreeNodes are about twice the size of regular nodes, we
use them only when bins contain enough nodes to warrant use
(see TREEIFY_THRESHOLD). And when they become too small (due to
removal or resizing) they are converted back to plain bins. In
usages with well-distributed user hashCodes, tree bins are
rarely used. Ideally, under random hashCodes, the frequency of
nodes in bins follows a Poisson distribution
(http://en.wikipedia.org/wiki/Poisson_distribution) with a
parameter of about 0.5 on average for the default resizing
threshold of 0.75, although with a large variance because of
resizing granularity. Ignoring variance, the expected
occurrences of list size k are (exp(-0.5)*pow(0.5, k)/factorial(k)).
The first values are:
0: 0.60653066
1: 0.30326533
2: 0.07581633
3: 0.01263606
4: 0.00157952
5: 0.00015795
6: 0.00001316
7: 0.00000094
8: 0.00000006
more: less than 1 in ten million
// 1. 桶的树化阈值:即 链表转成红黑树的阈值,在存储数据时,当链表长度 > 该值时,则将链表转换成红黑树
static final int TREEIFY_THRESHOLD = 8;
// 2. 桶的链表还原阈值:即 红黑树转为链表的阈值,当在扩容(resize())时(此时HashMap的数据存储位置会重新计算),在重新计算存储位置后,当原有的红黑树内数量 < 6时,则将 红黑树转换成链表
static final int UNTREEIFY_THRESHOLD = 6;
- 选择6和8,中间有个差值7可以有效防止链表和树频繁转换。
附:为什么使用红黑树而不是AVL树?
- 红黑树整体统计性能优于AVL树:
因为红黑树本身不是完全平衡的二叉树(只是“黑”平衡),所以插入删除性能略高于AVL,但牺牲了查找性能。
而AVL是完全平衡的二叉树,自平衡的计算牺牲了插入删除性能,但是因为最多只有一层的高度差,所以查找效率高些。
对于查找密集型任务,使用AVL树;对于插入密集型任务,使用红黑树。
3、存储流程
1.7
1.8
4、数组元素 & 链表结点 的实现类
-
1.7
HashMap
中的数组元素 & 链表节点 采用Entry
类 实现 -
1.8
HashMap
中的数组元素 & 链表节点 采用Node
类 实现, 红黑树节点 采用TreeNode
类 实现
与
JDK 1.7
的对比(Entry
类),仅仅只是换了名字
三、具体使用
1、主要使用API(1.7和1.8基本相同)
V get(Object key); // 获得指定键的值
V put(K key, V value); // 添加键值对
void putAll(Map<? extends K, ? extends V> m); // 将指定Map中的键值对 复制到 此Map中
V remove(Object key); // 删除该键值对
boolean containsKey(Object key); // 判断是否存在该键的键值对;是 则返回true
boolean containsValue(Object value); // 判断是否存在该值的键值对;是 则返回true
Set<K> keySet(); // 单独抽取key序列,将所有key生成一个Set
Collection<V> values(); // 单独value序列,将所有value生成一个Collection
void clear(); // 清除哈希表中的所有键值对
int size(); // 返回哈希表中所有 键值对的数量 = 数组中的键值对 + 链表中的键值对
boolean isEmpty(); // 判断HashMap是否为空;size == 0时 表示为 空
2、使用流程(7和8基本相同)
- 在具体使用时,主要流程是:
- 声明1个
HashMap
的对象 - 向
HashMap
添加数据(成对 放入 键 - 值对) - 获取
HashMap
的某个数据 - 获取
HashMap
的全部数据:遍历HashMap
四、基础知识:HashMap中的重要参数(7&8基本相同)
HashMap
的主要参数:容量(capacity)、加载因子(loadFactor)、扩容阈值(threshold)
1.8 由于数据结构中引入了 红黑树,故加入了 与红黑树相关的参数。具体介绍如下:
/**
* JDK 1.8
* 主要参数 同 JDK 1.7
* 即:容量、加载因子、扩容阈值(要求、范围均相同)
*/
// 1. 容量(capacity)HashMap中的数组长度
// a. 容量范围:必须是2的幂 & < 最大容量(2的30次方)
// b. 初始容量 = 哈希表创建时的容量
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // 默认容量 = 16 = 1<<4 = 00001中的1向左移4位 = 10000 = 十进制的2^4=16
static final int MAXIMUM_CAPACITY = 1 << 30; // 最大容量 = 2的30次方(若传入的容量过大,将被最大值替换)
// 2. 加载因子(loadFactor):HashMap在其容量扩容前可到达多满的一种尺度
// a. 加载因子越大,填满的元素越多 = 空间利用率高,但冲突的机会变大,查找效率变低(因为链表变长了)
// b. 加载因子越小,填满的元素越少 = 空间利用率小,冲突的机会变小,查找效率变高(链表变短)
final float loadFactor; // 实际加载因子
static final float DEFAULT_LOAD_FACTOR = 0.75f; // 默认加载因子 = 0.75
// 3. 扩容阈值(threshold):当哈希表的大小 ≥ 扩容阈值是,就会扩容哈希表(即capacity)
// a. 扩容 = 对哈希表进行resize操作(即重建内部数据结构),从而哈希表将具有大约两倍的桶数
// b. 扩容阈值 = 容量 × 加载因子
int threshold;
// 4. 其他
transient Node<K,V>[] table; // 存储数据的Node类型 数组,长度 = 2的幂;数组的每个元素 = 1个单链表
transient int size;// HashMap的大小,即 HashMap中存储的键值对的数量
/**
* 与红黑树相关的参数
*/
// 1. 桶的树化阈值:即 链表转成红黑树的阈值,在存储数据时,当链表长度 > 该值时,则将链表转换成红黑树
static final int TREEIFY_THRESHOLD = 8;
// 2. 桶的链表还原阈值:即 红黑树转为链表的阈值,当在扩容(resize())时(此时HashMap的数据存储位置会重新计算),在重新计算存储位置后,当原有的红黑树内数量 < 6时,则将 红黑树转换成链表
static final int UNTREEIFY_THRESHOLD = 6;
// 3. 最小树形化容量阈值:即 当哈希表中的容量 > 该值时,才允许树形化链表 (即 将链表 转换成红黑树)
// 否则,若桶内元素太多时,则直接扩容,而不是树形化
// 为了避免进行扩容、树形化选择的冲突,这个值不能小于 4 * TREEIFY_THRESHOLD
static final int MIN_TREEIFY_CAPACITY = 64;
容量 capacity 必须是2的幂
如果传入的capacity不是2的幂, 这个运算的结果是比我们传入的参数要大,而且是离我们传入的参数最近的2的幂的数。
为什么大小必须是2的幂?
- 原因有两点:1.加快哈希运算 2.减少哈希冲突
-
加快哈希运算:hash &(length - 1),因为 位运算与 & 比 逻辑运算取模 % 快一点点点
-
保证数据分散,减少哈希冲突: 使用2的幂为长度,则
length-1
后为奇数,该奇数转为2进制后最后一位肯定是1
。 这样奇偶由hash
值决定。否则,length-1
后为偶数的话,最后一位是0
,&hash
都是偶数。
加载因子(DEFAULT_LOAD_FACTOR = 0.75f)
很小概率问道为什么是 0.75?若问答下
- 源码注释:时间和空间的平衡
<p>As a general rule, the default load factor (.75) offers a good* tradeoff between time and space costs.
- 一个bucket空和非空的概率为0.5,通过牛顿二项式等数学计算,得到这个loadfactor的值为log(2),约等于0.693。取0.75应该是方便计算。
参考 What is the significance of load factor in HashMap?
五、源码分析
- 本次的源码分析主要是根据 使用步骤 进行相关函数的详细分析
- 主要分析内容如下:
1、步骤1:声明一个HashMap的对象
/**
* 函数使用原型
*/
Map<String,Integer> map = new HashMap<String,Integer>();
/**
* 源码分析:主要是HashMap的构造函数 = 4个
* 仅贴出关于HashMap构造函数的源码
*/
public class HashMap<K,V>
extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable{
// 省略上节阐述的参数
/**
* 构造函数1:默认构造函数(无参)
* 加载因子 & 容量 = 默认 = 0.75、16
*/
public HashMap() {
// 实际上是调用构造函数3:指定“容量大小”和“加载因子”的构造函数
// 传入的指定容量 & 加载因子 = 默认
this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
}
/**
* 构造函数2:指定“容量大小”的构造函数
* 加载因子 = 默认 = 0.75 、容量 = 指定大小
*/
public HashMap(int initialCapacity) {
// 实际上是调用指定“容量大小”和“加载因子”的构造函数
// 只是在传入的加载因子参数 = 默认加载因子
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
/**
* 构造函数3:指定“容量大小”和“加载因子”的构造函数
* 加载因子 & 容量 = 自己指定
*/
public HashMap(int initialCapacity, float loadFactor) {
// HashMap的最大容量只能是MAXIMUM_CAPACITY,哪怕传入的 > 最大容量
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
// 设置 加载因子
this.loadFactor = loadFactor;
// 设置 扩容阈值 = 初始容量
// 注:此处不是真正的阈值,是为了扩展table,该阈值后面会重新计算,下面会详细讲解
threshold = initialCapacity;
init(); // 一个空方法用于未来的子对象扩展
}
/**
* 构造函数4:包含“子Map”的构造函数
* 即 构造出来的HashMap包含传入Map的映射关系
* 加载因子 & 容量 = 默认
*/
public HashMap(Map<? extends K, ? extends V> m) {
// 设置容量大小 & 加载因子 = 默认
this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
// 该方法用于初始化 数组 & 阈值,下面会详细说明
inflateTable(threshold);
// 将传入的子Map中的全部元素逐个添加到HashMap中
putAllForCreate(m);
}
}
1.8 不同
/**
* 分析1:tableSizeFor(initialCapacity)
* 作用:将传入的容量大小转化为:>传入容量大小的最小的2的幂
* 与JDK 1.7对比:类似于JDK 1.7 中 inflateTable()里的 roundUpToPowerOf2(toSize)
*/
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
- 注:(同
JDK 1.7
类似)- 此处仅用于接收初始容量大小(
capacity
)、加载因子(Load factor
),但仍无真正初始化哈希表,即初始化存储数组table
- 此处先给出结论:真正初始化哈希表(初始化存储数组
table
)是在第1次添加键值对时,即第1次调用put()
时。下面会详细说明
- 此处仅用于接收初始容量大小(
2、步骤2:向HashMap添加数据(成对 放入 键 - 值对)(7&8主要差异)
版本 | 初始化方式 | hash值的计算方式 | 存放数据的规则 | 插入数据的方式 | 扩容后存储位置的计算方式 |
---|---|---|---|---|---|
JDK 1.7 | 单独函数:infalteTable() | 1.hashCode() 2.扰动处理 = 9次扰动 = 4次位运算 + 5次异或运算 | 数组、链表 - 无冲突时,存放在数组- 有冲突时,存放在链表 | 头插法 (先将原位置的数据移到后一位,再插入数据到该位置) | 全部按照原来的方法计算 (即 hashCode() ->> 扰动处理 ->> (h & length - 1) ) |
JDK 1.8 | 直接集成在扩容函数:resize() | 1.hashCode() 2.扰动处理 = 2次扰动 = 1次位运算 + 1次异或运算 | 数组、链表、红黑树 - 无冲突时,存放数组- 有冲突 & 链表长度 < 8时,存放链表 - 有冲突 & 链表长度 > 8时,存放红黑树 | 尾插法 (直接插入到链表尾部 / 红黑树) | 按照扩容后的规律计算 (即 扩容后的位置 = 原位置 or 原位置 + 旧容量 ) |
- 1.7 添加数据的流程如下
/**
* 源码分析:主要分析: HashMap的put函数
*/
public V put(K key, V value)
// 1. 若 哈希表未初始化(即 table为空)
// 则使用 构造函数时设置的阈值(即初始容量) 初始化 数组table
if (table == EMPTY_TABLE) {
inflateTable(threshold);
}
// 2. 判断key是否为空值null
// 2.1 若key == null,则将该键-值 存放到数组table 中的第1个位置,即table [0]
// (本质:key = Null时,hash值 = 0,故存放到table[0]中)
// 该位置永远只有1个value,新传进来的value会覆盖旧的value
if (key == null)
return putForNullKey(value);
// 2.2 若 key ≠ null,则计算存放数组 table 中的位置(下标、索引)
// a. 根据键值key计算hash值
int hash = hash(key);
// b. 根据hash值 最终获得 key对应存放的数组Table中位置
int i = indexFor(hash, table.length);
// 3. 判断该key对应的值是否已存在(通过遍历 以该数组元素为头结点的链表 逐个判断)
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
// 3.1 若该key已存在(即 key-value已存在 ),则用 新value 替换 旧value
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue; //并返回旧的value
}
}
modCount++;
// 3.2 若 该key不存在,则将“key-value”添加到table中
addEntry(hash, key, value, i);
return null;
}
- 1.8 添加数据的流程如下
/**
* 源码分析:主要分析HashMap的put函数
*/
public V put(K key, V value) {
// 1. 对传入数组的键Key计算Hash值 ->>分析1
// 2. 再调用putVal()添加数据进去 ->>分析2
return putVal(hash(key), key, value, false, true);
}
分析1:hash(key)!!7&8差异
/**
* 分析1:hash(key)
* 作用:计算传入数据的哈希码(哈希值、Hash值)
* 该函数在JDK 1.7 和 1.8 中的实现不同,但原理一样 = 扰动函数 = 使得根据key生成的哈希码(hash值)分布更加均匀、更具备随机性,避免出现hash值冲突(即指不同key但生成同1个hash值)
* JDK 1.7 做了9次扰动处理 = 4次位运算 + 5次异或运算
* JDK 1.8 简化了扰动函数 = 只做了2次扰动 = 1次位运算 + 1次异或运算
*/
// JDK 1.7实现:将 键key 转换成 哈希码(hash值)操作 = 使用hashCode() + 4次位运算 + 5次异或运算(9次扰动)
static final int hash(int h) {
h ^= k.hashCode();
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}
// JDK 1.8实现:将 键key 转换成 哈希码(hash值)操作 = 使用hashCode() + 1次位运算 + 1次异或运算(2次扰动)
// 1. 取hashCode值: h = key.hashCode()
// 2. 高位参与低位的运算:h ^ (h >>> 16)
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
// a. 当key = null时,hash值 = 0,所以HashMap的key 可为null
// 注:对比HashTable,HashTable对key直接hashCode(),若key为null时,会抛出异常,所以HashTable的key不可为null
// b. 当key ≠ null时,则通过先计算出 key的 hashCode()(记为h),然后 对哈希码进行 扰动处理: 按位 异或(^) 哈希码自身右移16位后的二进制
}
/**
* 计算存储位置的函数分析:indexFor(hash, table.length)
* 注:该函数仅存在于JDK 1.7 ,JDK 1.8中实际上无该函数(在putVal()中判断写出),但原理相同
* 为了方便讲解,故提前到此讲解
*/
static int indexFor(int h, int length) {
return h & (length-1);
// 将对哈希码扰动处理后的结果 与运算(&) (数组长度-1),最终得到存储在数组table的位置(即数组下标、索引)
}
- 总结 计算存放在数组 table 中的位置(即数组下标、索引)的过程
- 此处与
JDK 1.7
的区别在于:hash
值的求解过程中 哈希码的二次处理方式(扰动处理)- 步骤1、2 =
hash
值的求解过程
步骤 | 代码实现 | 具体实现过程 |
---|---|---|
1.计算哈希码 | h = key.hashCode() | 根据键key,通过hashCode()计算 hashCode()简介 |
2.二次处理哈希码 (最终求得 键对应的hash值) | h ^ (h >>> 16) | - 该处理也称 扰动处理 -即 哈希码 异或(^) 哈希码自身右移16位后的二进制 -本质:二次处理低位 = 哈希码的高16位不变、低16位 = 低16位 异或 高16位 (即 高位参与低位的运算) |
3.最终计算存储的数组位置 (根据hash值 & 数组长度) | h & (length - 1) | 二次处理的哈希码 与运算(&) (数组长度-1) |
- 计算示意图
在了解 如何计算存放数组table
中的位置 后,所谓 知其然 而 需知其所以然,下面我将讲解为什么要这样计算,即主要解答以下3个问题:
- 为什么不直接采用经过
hashCode()
处理的哈希码 作为 存储数组table
的下标位置? - 为什么采用 哈希码 与运算(&) (数组长度-1) 计算数组下标?
- 为什么在计算数组下标前,需对哈希码进行二次处理:扰动处理?
在回答这3个问题前,请大家记住一个核心思想:
所有处理的根本目的,都是为了提高 存储
key-value
的数组下标位置的 随机性 & 分布均匀性,尽量避免哈希冲突。即 对于不同的key
,存储的数组下标位置尽量不一样。
问题1:为什么不直接采用经过hashCode()处理的哈希码 作为 存储数组table的下标位置?
- 结论:容易出现 哈希码 与数组大小不匹配的情况,即 计算出来的哈希码 不在数组大小范围内,从而导致无法匹配存储位置。
- 原因如下图
- 为了解决 ”哈希码与数组大小不匹配“ 的问题,HashMap给的解决方案:哈希码 与运算(&) (数组长度-1)
- 引出问题2
问题2:为什么采用 哈希码 与运算(&) (数组长度-1) 计算数组下标?
-
结论:根据HashMap的容量大小(数组长度),按需取哈希码一定数量的低位作为存储的数组下标,从而解决 “ 哈希码与数组大小范围不匹配 ” 的问题
-
具体描述如下图
问题3:为什么在计算数组下标前,需对哈希码进行二次处理:扰动处理?
-
结论:加大哈希码低位的随机性,使得分布更均匀,从而提高对数组存储下标位置的 随机性&均匀性,最终减少哈希冲突。
-
具体如下图
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-gc8NHlES-1584256511041)(C:\Users\Kevin\AppData\Roaming\Typora\typora-user-images\1584083041918.png)]
至此,关于怎么计算 key-value
值存储在HashMap
数组位置 & 为什么要这么计算,讲解完毕。
分析2:putVal(hash(key), key, value, false, true);
此处有2个主要讲解点:
- 计算完存储位置后,具体该如何 存放数据 到哈希表中
- 具体如何扩容,即扩容机制
主要讲解点1:计算完存储位置后,具体该如何存放数据到哈希表中
由于数据结构中加入了红黑树,所以在存放数据到哈希表中时,需多次数据结构的判断:数组、红黑树、链表
与JDK 1.7的区别,1.7只需要判断数组和链表
/**
* 分析2:putVal(hash(key), key, value, false, true)
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
// 1. 若哈希表的数组tab为空,则 通过resize() 创建
// 所以,初始化哈希表的时机 = 第1次调用put函数时,即调用resize() 初始化创建
// 关于resize()的源码分析将在下面讲解扩容时详细分析,此处先跳过
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// 2. 计算插入存储的数组索引i:根据键值key计算的hash值 得到
// 此处的数组下标计算方式 = i = (n - 1) & hash,同JDK 1.7中的indexFor(),上面已详细描述
// 3. 插入时,需判断是否存在Hash冲突:
// 若不存在(即当前table[i] == null),则直接在该数组位置新建节点,插入完毕
// 否则,代表存在Hash冲突,即当前存储位置已存在节点,则依次往下判断:a. 当前位置的key是否与需插入的key相同、b. 判断需插入的数据结构是否为红黑树 or 链表
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null); // newNode(hash, key, value, null)的源码 = new Node<>(hash, key, value, next)
else {
Node<K,V> e; K k;
// a. 判断 table[i]的元素的key是否与 需插入的key一样,若相同则 直接用新value 覆盖 旧value
// 判断原则:equals()
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
// b. 继续判断:需插入的数据结构是否为红黑树 or 链表
// 若是红黑树,则直接在树中插入 or 更新键值对
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); ->>分析3
// 若是链表,则在链表中插入 or 更新键值对
// i. 遍历table[i],判断Key是否已存在:采用equals() 对比当前遍历节点的key 与 需插入数据的key:若已存在,则直接用新value 覆盖 旧value
// ii. 遍历完毕后仍无发现上述情况,则直接在链表尾部插入数据
// 注:新增节点后,需判断链表长度是否>8(8 = 桶的树化阈值):若是,则把链表转换为红黑树
else {
for (int binCount = 0; ; ++binCount) {
// 对于ii:若数组的下1个位置,表示已到表尾也没有找到key值相同节点,则新建节点 = 插入节点
// 注:此处是从链表尾插入,与JDK 1.7不同(从链表头插入,即永远都是添加到数组的位置,原来数组位置的数据则往后移)
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
// 插入节点后,若链表节点>数阈值,则将链表转换为红黑树
if (binCount >= TREEIFY_THRESHOLD - 1)
treeifyBin(tab, hash); // 树化操作
break;
}
// 对于i
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
// 更新p指向下一个节点,继续遍历
p = e;
}
}
// 对i情况的后续操作:发现key已存在,直接用新value 覆盖 旧value & 返回旧value
if (e != null) {
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e); // 替换旧值时会调用的方法(默认实现为空)
return oldValue;
}
}
++modCount;
// 插入成功后,判断实际存在的键值对数量size > 最大容量threshold
// 若 > ,则进行扩容 ->>分析4(但单独讲解,请直接跳出该代码块)
if (++size > threshold)
resize();
afterNodeInsertion(evict);// 插入成功时会调用的方法(默认实现为空)
return null;
}
/**
* 分析3:putTreeVal(this, tab, hash, key, value)
* 作用:向红黑树插入 or 更新数据(键值对)
* 过程:遍历红黑树判断该节点的key是否与需插入的key 相同:
* a. 若相同,则新value覆盖旧value
* b. 若不相同,则插入
*/
final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
int h, K k, V v) {
Class<?> kc = null;
boolean searched = false;
TreeNode<K,V> root = (parent != null) ? root() : this;
for (TreeNode<K,V> p = root;;) {
int dir, ph; K pk;
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((pk = p.key) == k || (k != null && k.equals(pk)))
return p;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0) {
if (!searched) {
TreeNode<K,V> q, ch;
searched = true;
if (((ch = p.left) != null &&
(q = ch.find(h, k, kc)) != null) ||
((ch = p.right) != null &&
(q = ch.find(h, k, kc)) != null))
return q;
}
dir = tieBreakOrder(k, pk);
}
TreeNode<K,V> xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
Node<K,V> xpn = xp.next;
TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
if (dir <= 0)
xp.left = x;
else
xp.right = x;
xp.next = x;
x.parent = x.prev = xp;
if (xpn != null)
((TreeNode<K,V>)xpn).prev = x;
moveRootToFront(tab, balanceInsertion(root, x));
return null;
}
}
}
- 总结
主要讲解点2:扩容机制(即 resize()函数)
- 扩容流程如下图
- 源码分析
/**
* 分析4:resize()
* 该函数有2种使用情况:1.初始化哈希表 2.当前数组容量过小,需扩容
*/
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table; // 扩容前的数组(当前数组)
int oldCap = (oldTab == null) ? 0 : oldTab.length; // 扩容前的数组的容量 = 长度
int oldThr = threshold;// 扩容前的数组的阈值
int newCap, newThr = 0;
// 针对情况2:若扩容前的数组容量超过最大值,则不再扩充
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
// 针对情况2:若无超过最大值,就扩充为原来的2倍
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // 通过右移扩充2倍
}
// 针对情况1:初始化哈希表(采用指定 or 默认值)
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
// 计算新的resize上限
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
// 把每个bucket都移动到新的buckets中
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // 链表优化重hash的代码块
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
// 原索引
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
// 原索引 + oldCap
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
// 原索引放到bucket里
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
// 原索引+oldCap放到bucket里
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
- 扩容流程(含 与
JDK 1.7
的对比)
常考点:1.7 链表 死循环 问题
- 原因结论:1.7 的转移数据方式是头插法(头插法方便,并且由于局部性原理,考虑到最近添加的最可能被访问),在数据扩容后容易出现链表逆序的情况,在多线程并发下,容易出现 环形链表, 从而在获取数据、遍历链表时形成死循环(
Infinite Loop
),即 死锁的状态 。
详细参看此文:疫苗:JAVA HASHMAP的死循环
先看源码
问题所在 transfer
:
单线程正常 rehash 如下:
多线程并发下的 rehash,可能出现死循环!
**1)假设我们有两个线程。**我用红色和浅蓝色标注了一下。
我们再回头看一下我们的 transfer代码中的这个细节:
而我们的线程二执行完成了。于是我们有下面的这个样子。
注意,因为Thread1的 e 指向了key(3),而next指向了key(7),其在线程二rehash后,指向了线程二重组后的链表。我们可以看到链表的顺序被反转后。
2)线程一被调度回来执行
- 先是执行 newTalbe[i] = e;
- 然后是e = next,导致了e指向了key(7),
- 而下一次循环的next = e.next导致了next指向了key(3)
3)一切安好
线程一接着工作。把key(7)摘下来,放到newTable[i]的第一个,然后把e和next往下移。
4)环形链接出现
e.next = newTable[i] 导致 key(3).next 指向了 key(7)
注意:此时的key(7).next 已经指向了key(3), 环形链表就这样出现了。
于是,当我们的线程一调用到,HashTable.get(11)时,悲剧就出现了——Infinite Loop。 CPU100%, 查看堆栈,你会发现程序都Hang在了HashMap.get()这个方法上
-
注:由于
JDK 1.8
转移数据操作 = 按旧链表的正序遍历链表、在新链表的尾部依次插入,所以不会出现链表 逆序、倒置的情况,故不容易出现环形链表的情况。但
JDK 1.8
还是线程不安全,因为 无加同步锁保护
1.8 扩容时,数据存储位置重新计算的方式
- 计算结论 & 原因解析
- 结论示意图
总结
- 添加数据的流程
- 7&8 区别
添加数据时 | ||||
---|---|---|---|---|
版本 | 初始化方式 | hash值的计算方式 | 存放数据的位置判断 | 插入数据方式 |
JDK 1.7 | 单独函数:inflateTable() | 1.hashCode() 2.扰动处理 = 9次扰动 = 4次位运算 + 5次异或运算 | 数组、链表 | 头插法 (先将原位置的数据移到后一位,再插入数据到该位置) |
JDK 1.8 | 直接集成在函数:resize() | 1.hashCode() 2.扰动处理 = 2次扰动 = 1次位运算 + 1次异或运算 | 数组、链表、红黑树 | 尾插法 (直接插入到链表尾部/红黑树) |
扩容机制 | |||
---|---|---|---|
版本 | 扩容后存储位置的计算方式 | 转移数据方式 | 需插入数据的插入时机&位置重计算时机 |
JDK 1.7 | 全部按照原来的方法进行计算 (即 hashCode() ->> 扰动处理 ->> (h & length-1)) | 头插法 (先将原位置的数据移到后一位,再插入数据到该位置) | 扩容后计算、单独计算(即 转移数据时无统一计算) |
JDK 1.8 | 按照扩容后的规律计算 (即 扩容后的位置 = 原位置 or 原位置 + 旧容量) | 尾插法 (直接插入到链表尾部/红黑树) | 扩容前计算、转移数据时统一计算 |
至此,关于 HashMap
的添加数据源码分析 分析完毕。
3、步骤3:从HashMap中获取数据
- 假如理解了上述
put()
函数的原理,那么get()
函数非常好理解,因为二者的过程原理几乎相同 get()
函数的流程如下:
/**
* 函数原型
* 作用:根据键key,向HashMap获取对应的值
*/
map.get(key);
/**
* 源码分析
*/
public V get(Object key) {
Node<K,V> e;
// 1. 计算需获取数据的hash值
// 2. 通过getNode()获取所查询的数据 ->>分析1
// 3. 获取后,判断数据是否为空
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
/**
* 分析1:getNode(hash(key), key))
*/
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
// 1. 计算存放在数组table中的位置
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
// 4. 通过该函数,依次在数组、红黑树、链表中查找(通过equals()判断)
// a. 先在数组中找,若存在,则直接返回
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
// b. 若数组中没有,则到红黑树中寻找
if ((e = first.next) != null) {
// 在树中get
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
// c. 若红黑树中也没有,则通过遍历,到链表中寻找
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
至此,关于 “向 HashMap
获取数据 “讲解完毕。
4、步骤4:对HashMap的其他操作
HashMap
除了核心的put()
、get()
函数,还有以下主要使用的函数方法
void clear(); // 清除哈希表中的所有键值对
int size(); // 返回哈希表中所有 键值对的数量 = 数组中的键值对 + 链表中的键值对
boolean isEmpty(); // 判断HashMap是否为空;size == 0时 表示为 空
void putAll(Map<? extends K, ? extends V> m); // 将指定Map中的键值对 复制到 此Map中
V remove(Object key); // 删除该键值对
boolean containsKey(Object key); // 判断是否存在该键的键值对;是 则返回true
boolean containsValue(Object value); // 判断是否存在该值的键值对;是 则返回true
这些方法比较简单就不详细叙述。