最近有小伙伴向我询问重复测量数据的分析方法,他遭遇的问题是:数据通过了方差齐性检验,但是数据分布略微偏态,这种情况该怎么做呢?
重复测量数据
重复测量数据是指对研究对象的某一指标反复进行多次测量所得到的研究数据,常存在涉及配对设计的实验中。但是不同的设计也需要不同的处理方法。
举个栗子:某医生计划对30名患者进行某种干预,在干预开展前、开展后的1个月、3个月开展干预效果的评估,在该试验中,患者中开展同一种干预措施,只涉及一个因素变化,一般选用单因素重复测量方差分析。
要利用方差分析,有几个条件需要满足:方差齐性,这个可以在SPSS里进行Levene进行判断,方差齐性不能满足的话基本上需要放弃方差分析的方法了。这里我们要关注的是正态性。
正态性重要吗?
很显然,正态性是重要的,但是有不少小伙伴对正态性的理解存在一定的误解。主要有是两个问题:①方差分析的正态性是原始数据的正态性吗?②近似正态分布可以使用方差分析吗
①方差分析的正态性是原始数据的正态性吗?
按往常的套路来说,有此一问基本上说明这个问题的答案是否定的。当然这次也不例外😄。如果不是数据的正态性,那要求哪个指标的正态性呢?。答案是:残差。具体而言,如果我们希望干预措施是有效的话,观察得到的结局不应该是正态分布,而是在疗效水平上的上下波动,这种上下波动是来源于个体的差异性,所以要求的是残差的正态性,
②近似正态分布可以使用方差分析吗?
答案是:可以。此处的正态还是要求残差的正态,有的小伙伴拿着原始数据的直方图,来问我:“你看它还是看着有点偏态,这能用方差分析吗?”。我要说的是:首先,我们需要的是残差正态,另外,方差分析对于非正态性的分析比较稳健,对方差齐性比较敏感,因此对正态分布的要求并不是特别高。
有同学问了,如果我方差齐性、正态性都不满足,那我该怎么办呢?
这就是另外的问题了,留待下次解决。