正态性和方差齐性在重复测量数据的分析里重要吗?

最近有小伙伴向我询问重复测量数据的分析方法,他遭遇的问题是:数据通过了方差齐性检验,但是数据分布略微偏态,这种情况该怎么做呢?

重复测量数据

重复测量数据是指对研究对象的某一指标反复进行多次测量所得到的研究数据,常存在涉及配对设计的实验中。但是不同的设计也需要不同的处理方法。

举个栗子:某医生计划对30名患者进行某种干预,在干预开展前、开展后的1个月、3个月开展干预效果的评估,在该试验中,患者中开展同一种干预措施,只涉及一个因素变化,一般选用单因素重复测量方差分析。
要利用方差分析,有几个条件需要满足:方差齐性,这个可以在SPSS里进行Levene进行判断,方差齐性不能满足的话基本上需要放弃方差分析的方法了。这里我们要关注的是正态性。

正态性重要吗?

很显然,正态性是重要的,但是有不少小伙伴对正态性的理解存在一定的误解。主要有是两个问题:①方差分析的正态性是原始数据的正态性吗?②近似正态分布可以使用方差分析吗
①方差分析的正态性是原始数据的正态性吗?
按往常的套路来说,有此一问基本上说明这个问题的答案是否定的。当然这次也不例外😄。如果不是数据的正态性,那要求哪个指标的正态性呢?。答案是:残差。具体而言,如果我们希望干预措施是有效的话,观察得到的结局不应该是正态分布,而是在疗效水平上的上下波动,这种上下波动是来源于个体的差异性,所以要求的是残差的正态性,

②近似正态分布可以使用方差分析吗?
答案是:可以。此处的正态还是要求残差的正态,有的小伙伴拿着原始数据的直方图,来问我:“你看它还是看着有点偏态,这能用方差分析吗?”。我要说的是:首先,我们需要的是残差正态,另外,方差分析对于非正态性的分析比较稳健,对方差齐性比较敏感,因此对正态分布的要求并不是特别高。

有同学问了,如果我方差齐性、正态性都不满足,那我该怎么办呢?

这就是另外的问题了,留待下次解决。

重复测量方差分析(Repeated Measures ANOVA),是一种用于评估当同一受试者被多次观测或者在同条件下接受测试时所获得的数据之间是否存在显著差异的方法。这种类型的方差分析特别适用于实验设计中,其中同一个体或匹配个体群组在两个以上的时间点上或同的条件设置下进行了观察。 ### 基本概念 - **数据结构**:与标准的单因素或多因素方差分析相比,重复测量ANOVA考虑到了来自相同主体的同观测值之间的关联性。 - **假设前提**:包括分布、等变异数以及球形假定(即各组间的协方差矩阵是对角线元素相等且非对角线元素为零的情况)。违反这些假设可能需要采取调整措施或其他替代方法。 - **效应分解**:可以区分出由时间变化引起的主效应、处理间的影响以及其他交互作用的效果。 ### 计算方法 为了执行重复测量方差分析,通常会经历以下几个过程: - 定义模型中的因子水平,确定哪些变量被视为固定效果而哪些可能是随机效果; - 对每种组合下的响应变量均值进行估计; - 利用F统计量比较各个来源变异的比例以判断是否有统计上的显着性差别; - 如果存在多于一个的因素,则还需考察它们之间的相互影响是否重要; - 当发现有显著的结果之后,可能会进一步做事后检验(post-hoc tests)来探索具体哪一对或几对比导致了整体上的差异。 对于实际应用来说,大多数情况下人们会选择使用专门软件如SPSS, R, SAS等来进行复杂的计算工作而是手动完成整个流程。这类程序能够自动处理输入的数据集并且输出详细的统计报告,其中包括必要的表格图表帮助解释结果的意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值