在你的CUDA,cuDNN,torch版本对应的情况下检查torch版本
python
import torch
print(torch.__version__)
居然是+cpu,明明自己下载的是gpu版本
1.9.1+cpu
搜寻了一圈从该博主下找到了答案如图:(23条消息) torch.cuda.is_available()返回false——解决办法_Nefu_lyh的博客-CSDN博客_torch.cuda.is_available
那么接下来按博主的方法卸载torch:因为我是在虚拟环境中安装的,找到该虚拟环境的lib->site-packages(envs表示根目录,里面有你所有的虚拟环境),例如我的是D:\anaconda\envs\你的虚拟环境名称\Lib\site-packages
,删除所有torch开头的文件:
接下来去官网下载gpu版本的torch
进入官网Start Locally | PyTorch
找到下图位置选择所需配置,注意:要用pip!!!!!!!
复制红线标记的网址,打开后显示:
找到自己对应的版本,下载之前先打开cmd终端执行下面一句话查看自己下载的python支持的文件名:
pip debug --verbose
我就选择红线标记的这个版本找到对应链接下载好了
将torch和torchvision的.whl都下载好,下载完成后,打开cmd,注意一定要用cmd!!!
进入到下载文件的目录中,打开自己的虚拟环境,例如我把他放在了D盘
进入到自己的环境执行两句pip语句
测试一下:
python
import torch
torch.cuda.is_available()
终于成功了: