杭电ACM OJ 1028 Ignatius and the Princess III 母函数+优化

本文介绍了杭电ACM在线判题系统(OJ)中的一道题目1028 - Ignatius and the Princess III,探讨了利用母函数进行解题的方法,并分享了优化解题过程的关键思路。
摘要由CSDN通过智能技术生成

Ignatius and the Princess III

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 23133    Accepted Submission(s): 16129


Problem Description
"Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.

"The second problem is, given an positive integer N, we define an equation like this:
  N=a[1]+a[2]+a[3]+...+a[m];
  a[i]>0,1<=m<=N;
My question is how many different equations you can find for a given N.
For example, assume N is 4, we can find:
  4 = 4;
  4 = 3 + 1;
  4 = 2 + 2;
  4 = 2 + 1 + 1;
  4 = 1 + 1 + 1 + 1;
so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"
 

Input
The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.
 

Output
For each test case, you have to output a line contains an integer P which indicate the different equations you have found.
 

Sample Input
  
  
4 10 20
 

Sample Output
5
42

627

翻译:

  4 = 4;
  4 = 3 + 1;
  4 = 2 + 2;
  4 = 2 + 1 + 1;
  4 = 1 + 1 + 1 + 1;

例如就是把4的所有加出来的情况都列出来,看看一共有几种。

思路:

粗粗看了一眼,动态规划可以做。不过显然,用母函数是更为优雅,标准的做法。

想深刻学习下母函数的,可以看

http://blog.csdn.net/qq_36523667/article/details/78682444

用两个经典例子+一个附加例子把母函数讲的十分透彻,可以说是目前最易于理解的母函数的文章了。

本题母函数思路:

就是上面文章里的最后一题。我直接拷一下思路。

[代码思路:

传进来的是n,开n个数组即可。就好比这个和为5的这个例子

数组1:0 1 2 3 4 5

数组2:0 2 4

数组3:0 3

数组4:0 4

数组5:0 5


就解决了。题外话,难道n个数组就傻傻地开n个for循环吗,最后我看了一下。开3重循环,从最后一层开始找就很快了。这样一来时间复杂度远没有O(n^3)。]

代码:(就是弄一个栈不断地去加每一行的值,并保存下来,从最后一行开始是效率最高的)

package ACM1000_1099;

// TODO: 2017/12/1 母函数+优化

import java.util.ArrayList;
import java.util.List;
import java.util.Map;

public class IgnatiusAndThePrincessThree1028 {
    IgnatiusAndThePrincessThree1028(int n) {
        calculate(n);
    }

    int calculate(int n) {
        int[][] a = new int[n][n + 1];

        //n个数组赋值
        for (int row = 0; row < n; row++) {
            int index = row + 1;//倍数
            for (int col = 0; col < n + 1; col++) {
                int num = col * index;
                if (num <= n) {
                    a[row][col] = num;
                }
            }
        }

//        for (int row = 0; row < n; row++) {
//            for (int col = 0; col < n + 1; col++) {
//                System.out.print(a[row][col] + " ");
//            }
//            System.out.println();
//        }

        List<Integer> list = new ArrayList<>();
        list.add(0);

        List<Integer> tempList = new ArrayList<>();

//        for (int col1 = 0; col1 < n + 1; col1 ++) {
//            if (col1 != 0 && a[4][col1] == 0) {
//                break;
//            } else {
//                for (int col2 = 0; col2 < n + 1; col2 ++) {
//                    if (col2 != 0 && a[3][col2] == 0) {
//                        break;
//                    } else {
//                        int num = a[4][col1] + a[3][col2];
//                        if (num <= n) {
//                            list.add(num);
//                        }
//                    }
//                }
//            }
//        }

        for (int row = 0; row < n; row ++) {
            for (int col = 0; col < n + 1; col ++) {
                if (col != 0 && a[row][col] == 0) {
                    break;
                } else {
                    for (int i = 0; i < list.size(); i ++) {
                        int num = list.get(i) + a[row][col];
                        if (num <= n) {
                            tempList.add(num);
                        }
                    }
                }
            }
            list.clear();
            list.addAll(tempList);
            tempList.clear();
        }

        int result = 0;
        for (int i = 0; i < list.size(); i ++) {
            if (list.get(i) == n) {
                result ++;
            }
        }

        System.out.println(result + "");

        return 0;
    }

    public static void main(String[] args) throws Exception {
        IgnatiusAndThePrincessThree1028 i = new IgnatiusAndThePrincessThree1028(20);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值