【深度学习】【实例分割】mask的IoU的代码分析

本文深入探讨了深度学习中的实例分割,特别是针对mask的IoU(Intersection over Union)计算。通过示例代码,详细解释了如何进行IoU的求解过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

实例分割中mask的IoU的代码分析)

(话不多说上代码)

def mask_iou(mask1, mask2):
    """
    mask1: [m1,n] m1 means number of predicted objects 
    mask2: [m2,n] m2 means number of gt objects
    Note: n means image_w x image_h
    """
    intersection = torch.matmul(mask1, mask2.t())
    area1 = torch.sum(mask1, dim=1).view(1, -1)
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值