yolo-mask的损失函数l包含三部分_IoU、GIoU、DIoU、CIoU损失函数的那点事儿

b317b80e1d1647b2a901cc53296e956a.png

一、IOU(Intersection over Union)

1. 特性(优点)

IoU就是我们所说的交并比,是目标检测中最常用的指标,在anchor-based的方法中,他的作用不仅用来确定正样本和负样本,还可以用来评价输出框(predict box)和ground-truth的距离。

  1. 可以说它可以反映预测检测框与真实检测框的检测效果。
  2. 还有一个很好的特性就是尺度不变性,也就是对尺度不敏感(scale invariant), 在regression任务中,判断predict box和gt的距离最直接的指标就是IoU。(满足非负性;同一性;对称性;三角不等性)
import 

2. 作为损失函数会出现的问题(缺点)

  1. 如果两个框没有相交,根据定义,IoU=0,不能反映两者的距离大小(重合度)。同时因为loss=0,没有梯度回传,无法进行学习训练。
  2. IoU无法精确的反映两者的重合度大小。如下图所示,三种情况IoU都相等,但看得出来他们的重合度是不一样的,左边的图回归的效果最好,右边的最差。

295a8722d6db9545ffe4bec39aec937f.png

二、GIOU(Generalized Intersection over Union)

1、来源

在CVPR2019中,论文

《Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression》​arxiv.org

的提出了GIoU的思想。由于IoU是比值的概念,对目标物体的scale是不敏感的。然而检测任务中的BBox的回归损失(MSE loss, l1-smooth loss等)优化和IoU优化不是完全等价的,而且 Ln 范数对物体的scale也比较敏感,IoU无法直接优化没有重叠的部分。

这篇论文提出可以直接把IoU设为回归的loss。

上面公式的意思是:先计算两个框的最小闭包区域面积

(通俗理解: 同时包含了预测框和真实框 的最小框的面积),再计算出IoU,再计算闭包区域中不属于两个框的区域占闭包区域的比重,最后用IoU减去这个比重得到GIoU。

附:

generalized-iou/g-darknet​github.com
f2cebe6b2ccd1af30a968e85cc589918.png

2、 特性[1]

  • 与IoU相似,GIoU也是一种距离度量,作为损失函数的话,
    ,满足损失函数的基本要求
  • GIoU对scale不敏感
  • GIoU是IoU的下界,在两个框无限重合的情况下,IoU=GIoU=1
  • IoU取值[0,1],但GIoU有对称区间,取值范围[-1,1]。在两者重合的时候取最大值1,在两者无交集且无限远的时候取最小值-1,因此GIoU是一个非常好的距离度量指标。
  • 与IoU只关注重叠区域不同,GIoU不仅关注重叠区域,还关注其他的非重合区域,能更好的反映两者的重合度。

4ca385a4df5572b12a67b8b572cee202.png
def 

三、DIoU(Distance-IoU)[2]

1、来源

DIoU要比GIou更加符合目标框回归的机制,将目标与anchor之间的距离,重叠率以及尺度都考虑进去,使得目标框回归变得更加稳定,不会像IoU和GIoU一样出现训练过程中发散等问题。论文中

Distance-IoU​arxiv.org
基于IoU和GIoU存在的问题,作者提出了两个问题:
1. 直接最小化anchor框与目标框之间的归一化距离是否可行,以达到更快的收敛速度?
2. 如何使回归在与目标框有重叠甚至包含时更准确、更快?

其中,

分别代表了预测框和真实框的中心点,且
代表的是计算两个中心点间的欧式距离。
代表的是能够同时包含预测框和真实框的
最小闭包区域的对角线距离。

9a0fada2b7a97cb2272a0cd39aee44d5.png
DIoU中对anchor框和目标框之间的归一化距离进行了建模

附:

YOLOV3 DIoU GitHub项目地址​github.com

2、优点

  • 与GIoU loss类似,DIoU loss(
    )在与目标框不重叠时,仍然可以为边界框提供移动方向。
  • DIoU loss可以直接最小化两个目标框的距离,因此比GIoU loss收敛快得多。
  • 对于包含两个框在水平方向和垂直方向上这种情况,DIoU损失可以使回归非常快,而GIoU损失几乎退化为IoU损失。
  • DIoU还可以替换普通的IoU评价策略,应用于NMS中,使得NMS得到的结果更加合理和有效。

实现代码:[3]

def 

四、CIoU(Complete-IoU)

论文考虑到bbox回归三要素中的长宽比还没被考虑到计算中,因此,进一步在DIoU的基础上提出了CIoU。其惩罚项如下面公式:

其中
是权重函数,

用来度量长宽比的相似性,定义为

完整的 CIoU 损失函数定义:

最后,CIoU loss的梯度类似于DIoU loss,但还要考虑

的梯度。在长宽在
的情况下,
的值通常很小,会导致梯度爆炸,因此在
实现时将替换成1。
[4]

实现代码:[5]

def 

五、损失函数在YOLOv3上的性能(论文效果)

9bae56b77fc9b7bd1ad4fbdb01f6c46e.png
目标检测算法之AAAI 2020 DIoU Loss 已开源(YOLOV3涨近3个点)​cloud.tencent.com

推荐文章:

https://zhuanlan.zhihu.com/p/104236411​zhuanlan.zhihu.com

参考

  1. ^特性参考 https://zhuanlan.zhihu.com/p/57863810
  2. ^DIoU参考 https://mp.weixin.qq.com/s?__biz=MzUxNjcxMjQxNg==&mid=2247493985&idx=3&sn=23da3173b481d309903ec0371010d9f2&chksm=f9a19beeced612f81f94d22778481ffae16b25abf20973bf80917f9ff9b38b3f78ecd8237562&mpshare=1&scene=1&srcid=&sharer_sharetime=1575276746557&sharer_shareid=42a896371dfe6ebe8cc4cd474d9b747c&key=e2a6a5ccea4b8ce456e144f8db72f8becd6cfd3489f508fde8f890126594ca445adaf6bd6018077f94490c98f494d0eaf8c70165161be0cb274041ca9948ce62f6efe6e8bd9123a5b88be2b216b3da7e&ascene=1&uin=MjAyNTQwODM2NQ%3D%3D&devicetype=Windows+10&version=62070158&lang=zh_CN&pass_ticket=lZlnK6GAZ9ytbMcunsgTln9TaxVld4X1XGi8tTmIAmsi3d5CrasWo8RlWqYnGtqv
  3. ^DIOU代码实现 https://blog.csdn.net/TJMtaotao/article/details/103317267
  4. ^AAAI 2020 | DIoU 和 CIoU:IoU 在目标检测中的正确打开方式 https://bbs.cvmart.net/articles/1396
  5. ^https://blog.csdn.net/TJMtaotao/article/details/103317267
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值