时间戳(timestamp)方式 来实现数据库的增量同步操作(一)

这个实验主要思想是在创建数据库表的时候,

通过增加一个额外的字段,也就是时间戳字段,

例如在同步表 tt1 和表 tt2 的时候,

通过检查那个表是最新更新的,那个表就作为新表,而另外的表最为旧表被新表中的数据进行更新。

实验数据如下:

mysql database 5.1

test.tt1( id int primary key , name varchar(50) );

mysql.tt2( id int primary key, name varchar(50) );

快照表,可以将其存放在test数据库中,

同样可以为了简便,可以将其创建为temporary 表类型。

数据如图 kettle-1
在这里插入图片描述
kettle-1

============================================================

主流程如图 kettle-2

在这里插入图片描述
kettle-2

在prepare中,向 tt1,tt2 表中增加 时间戳字段,

由于tt1,tt2所在的数据库是不同的,所以分别创建两个数据库的连接。

prepare
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
kettle-6

在这里介绍一下Main的层次:

Main

START

Main.prepare

Main.main_thread

{

START

main_thread.create_tempTable

main_thread.insert_tempTable

main_thread.tt1_tt2_syn

SUCCESS

}

Main.finish

SUCCESS

在main_thread中的过程是这样的:

作为一个局部的整体,使它每隔200s内进行一次循环,

这样的话,如果在其中有指定的表 tt1 或是 tt2 对应被更新或是插入的话,

该表中的updateTime字段就会被捕捉到,并且进行同步。

如果没有更新出现,则会走switch的 default 路线对应的是write to log.

继续循环。

首先创建一个快照表,然后将tt1,tt2表中的最大(最新)时间戳的值插入到快照表中。

然后,通过一个transformation来判断那个表的updateTime值最新,

来选择对应是 tt1表来更新 tt2 还是 tt2 表来更新 tt1 表;

main_thread.create_tempTable.JOB:
在这里插入图片描述
在这里插入图片描述
PS: 对于第二个SQL 应该改成(不修改会出错的)

set @var1 = ( select MAX(updatetime) from tt2);

insert into test.temp values ( 2 , @var1 ) ;

因为conn对应的是连接mysql(数据库实例名称),

但是我们把快照表和tt1 表都存到了test(数据库实例名称)里面。

在上面这个图中对应的语句是想实现,在temp表中插入两行记录元组。

其中id为1 的元组对应的temp.lastTime 字段 是 从tt1 表中选出的 updateTime 值为最新的,

id 为2的元组对应的 temp.lastTime 字段 是 从 tt2 表中选出的 updateTime 值为最新的 字段。

当然 , id 是用来给后续 switch 操作提供参考的,用于标示最新 updateTime 是来自 tt1 还是 tt2,

同样也可以使用 tableName varchar(50) 这种字段 来存放 最新updateTime 对应的 数据库.数据表的名称也可以的。

main_thread.tt1_tt2_syn.Transformation:
在这里插入图片描述
首先,创建连接 test 数据库的 temp 表的连接,

选择 temp表中 对应 lastTime 值最新的所在的记录

所对应的 id 号码。

首先将temp中 lastTime 字段进行 降序排列,

然后选择id , 并且将选择记录仅限定成一行。
在这里插入图片描述
然后根据id的值进行 switch选择。

在这里LZ很想使用,SQL Executor,

但是它无法返回对应的id值。

但是表输入可以返回对应的id值,

并被switch接收到。
在这里插入图片描述
下图是对应 switch id = 1 的时候:即 tt1 更新 tt2

注意合并行比较 的新旧数据源 的选择

和Insert/Update 中的Target table的选择
在这里插入图片描述
下图是对应 switch id = 2 的时候:即 tt2 更新 tt1

注意合并行比较 的新旧数据源 的选择

和Insert/Update 中的Target table的选择
在这里插入图片描述
但是考虑到增加一个 column 会浪费很多的空间,

所以咋最终结束同步之后使用 finish操作步骤来将该 updateTime这个字段进行删除操作即可。

这个与Main中的prepare的操作是相对应的。

Main.finish
在这里插入图片描述

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值