2017 计蒜之道 初赛 第三场 腾讯狼人杀(简单)(暴搜)

传送门

不久前,腾讯推出了一款改进后的狼人杀游戏。如下是这款游戏的背景和详细规则:

很久很久以前,在莱茵河畔一座岸壁陡峭的山顶上,有一个名叫“杜斯特瓦德”的小村庄。不久前,这个小村庄每晚都会受到狼人的侵袭。每个夜晚,狼人都会在村中进行抢劫,并且会有一个村民成为这群狼人的牺牲品。然而村民们不会坐以待毙,他们试图在白天找到这些狼人并处决他们。

作为杜斯特瓦德村的长老,你需要组织村民来对抗狼人,村民包括许多有超能力的人,比如预言家可以检验一个人是否是隐藏在神民阵营的狼人、猎人可以开枪打死一名狼人。因为狼人白天隐藏的非常深,仅仅单人的行动往往不能限制狼人的行动,多人行动将会起到更好的效果。比如预言家和猎人一起行动将被检验出是狼人的“村民”直接打死,村庄将回归和平。

我们将这样的一对人所产生的战斗力记作 ww,值得注意的是,一个人可以被多次计算,比如预言家可以先后和猎人、女巫(或其他人)组合,即如果预言家和猎人的战斗力为 ww,预言家和女巫的战斗力为 w'w,这三个人的战斗力之和为 w+w'w+w

不过因为经过“新月”事件,村庄贫苦破败,你需要支付一定的金额给各个被你聘用的村民,假设你邀请了k个村民,则需要 k(2n-k)k(2nk)块钱(nn 为村民总数),你的资金也不太足够,所以你希望资金的利用率最大,资金的利用率定义为:((被选择的人战斗力之和 // 你支付的资金))。除此之外有些人基于他们的重要性,是必须被选择的。你必须邀请他们来参加战斗(保证至少一人)。

输入格式

第一行包括两个整数 n,mn,m 分别表示 nn 个村民和有 mm 对人之间有战斗力。

接下来 mm 行,每行有三个整数 u_i,v_i,w_iui,vi,wi (1 \le u_i,v_i \le n,(1ui,vin, 1 \le w_i \le 100,1wi100, u_i \neq v_i)uivi)表示 这对人可以产生的战斗力 w_iwi

接下来 nn 个数,对于第 ii 个数,00 表示第 ii 个人可参加战斗,11 表示第 ii 个人必须参加战斗(保证至少一个 11)。

对于简单版本,1 \leq n \leq 20,1n20, 0 \le m \le n(n-1)/20mn(n1)/2

对于中等版本,1 \leq n \leq 300,1n300, 0 \le m \le \min(1000, n(n-1)/2)0mmin(1000,n(n1)/2)

对于困难版本,1 \leq n \leq 400,1n400, 0 \le m \le \min(10000, n(n-1)/2)0mmin(10000,n(n1)/2)

输出格式

对于简单版本和中等版本,输出一个 44 位小数,表示资金利用率的最大值,结果四舍五入;

对于困难版本,输出一个 66 位小数,表示资金利用率的最大值,结果四舍五入。

样例输入1
3 1
1 2 3
1 0 0
样例输出1
0.3750
样例输入2
3 1
1 2 3
0 0 1
样例输出2
0.3333


#include <iostream>
#include <stdio.h>
#include <cstring>
#include <string>
#include <algorithm>
#include <queue>
#include <stack>
#include <cmath>
#include <map>
#include <bitset>
#include <set>
#include <vector>
#include <functional>
using namespace std;

#define pi acos(-1)
#define endl '\n'
#define rand() srand(time(0));
#define me(x) memset(x,0,sizeof(x));
#define foreach(it,a) for(__typeof((a).begin()) it=(a).begin();it!=(a).end();it++)
#define close() ios::sync_with_stdio(0);

typedef long long LL;
const int INF=0x3f3f3f3f;
const LL LINF=0x3f3f3f3f3f3f3f3fLL;
//const int dx[]={-1,0,1,0,-1,-1,1,1};
//const int dy[]={0,1,0,-1,1,-1,1,-1};
const int maxn=1e4+5;
const int maxx=1e6+3;
const double EPS=1e-7;
const int MOD=10000007;
typedef pair<int, int>P;
#define mod(x) ((x)%MOD);
template<class T>inline T min(T a,T b,T c) { return min(min(a,b),c);}
template<class T>inline T max(T a,T b,T c) { return max(max(a,b),c);}
template<class T>inline T min(T a,T b,T c,T d) { return min(min(a,b),min(c,d));}
template<class T>inline T max(T a,T b,T c,T d) { return max(max(a,b),max(c,d));}
//typedef tree<pt,null_type,less< pt >,rb_tree_tag,tree_order_statistics_node_update> rbtree;
/*lch[root] = build(L1,p-1,L2+1,L2+cnt);
    rch[root] = build(p+1,R1,L2+cnt+1,R2);中前*/
/*lch[root] = build(L1,p-1,L2,L2+cnt-1);
    rch[root] = build(p+1,R1,L2+cnt,R2-1);中后*/
long long gcd(long long a , long long b){if(b==0) return a;a%=b;return gcd(b,a);}
#define FOR(x,n,i) for(int i=x;i<=n;i++)
#define FOr(x,n,i) for(int i=x;i<n;i++)
#define W while

int n,m,sum=0,num=0;
int vis[maxn],mapp[30][30],cnt[30];
double ans=0;
void dfs(int x)
{
    if(x==n+1)
    {
       // cout<<num<<endl;
        double val=sum*1.0/(double)(num*(2*n-num));//取效率大值
        if(ans<val) ans=val;
        return ;
    }
    FOR(0,1,i)//0表示不取 1表示取
    {
        if(vis[x]&&i==0) continue;
        cnt[x]=i;
        if(cnt[x])
        {
            FOr(1,x,j)//只取在x前面的农民
            {
                if(cnt[j])
                    sum+=mapp[j][x];
              //  cout<<j<<"  "<<x<<endl;
            }
            num++;
        }
        dfs(x+1);
        if(cnt[x])//回溯
        {
            FOr(1,x,j)
                if(cnt[j])
                    sum-=mapp[j][x];
            num--;
        }
    }
}
int main()
{
    cin>>n>>m;
    me(mapp);me(vis);me(cnt);
    FOR(1,m,i)
    {
        int x,y,z;
        cin>>x>>y>>z;
        mapp[x][y]=z;mapp[y][x]=z;
    }
    FOR(1,n,i)
        cin>>vis[i];
    dfs(1);
    printf("%.4lf\n",ans);
}








评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值