题目
给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且
m>1),每段绳子的长度记为 k[0],k[1]...k[m] 。请问 k[0]*k[1]*...*k[m] 可能的最大乘积是
多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到
的最大乘积是18。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
示例
输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/jian-sheng-zi-ii-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解题思路
1.常规动态规划法
1.1dp的定义:表示绳子长度为n时最大的乘积数;
1.2初始状态可知:dp[1]=1;dp[2]=1;dp[3]=2
1.3状态转移:如绳子长度为7时可以分解为二种状态组合;组合方式很多,如:1+6;2+4;3+3;等,在根据题意我们可得:状态方程为
for(int i=7;i<=n;i++){
for(int j=1;j<=i/2;j++)
c[i]=max(max(c[j],j)*max(c[i-j],i-j),c[i]);
}
2.改进时间复杂度的动规
主要思想是从列表:
----n:1-2-3-4-5-6-07-08-09-10
结果:1-1-2-4-6-9-12-18-27-36
发现其规律:c[i]状态可以分解为c[i-3]状态和长度为3的状态。
故状态转移方程为:c[i]=c[i-3]*3;(i>=7)
class Solution {
public:
int cuttingRope(int n) {
long long c[1010]={0,0,0,0}; //表示长度为n的最大乘积
c[1]=1;
c[2]=1;
c[3]=2;
c[4]=4;
c[5]=6;
c[6]=9;
for(int i=7;i<=n;i++){
c[i]=(c[i-3]*3)%1000000007;
}
return (int )c[n];
}
};
注:第二种方法为什么是这个规律,我暂时没有想白这样的状态方程是如何来的