给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]…k[m] 。请问 k[0]k[1]…*k[m] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
示例 1:
输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1
示例 2:
输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36
提示:
2 <= n <= 1000
注意:本题与主站 343 题相同:https://leetcode-cn.com/problems/integer-break/
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/jian-sheng-zi-ii-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
class Solution {
public:
long long mypow(int a,int b){
long long result=1;
for(int i=0;i<b;i++){
result = result * a;
result = result % 1000000007;
}
return result;
}
int cuttingRope(int n) {
//这道题和剪绳子I的主体等价,主要是对结果要进行取以防止越界;
//这道题我们采用贪心算法;
/*这道题我们先找找规律:
当n=1时,这时最大就是1;
当n=2时,这时最大是2,不应该切分;
当n=3时,这时最大是3,也不切分;
当n=4时,4和2x2=4相等,也可以切分;
当n>4时,都切分,
那么如果我们取不切分的最大的3,看看n中有多少个3,就很好解决这个问题了。
这时,n%3会有余数,余数为0,1,2
当余数为0,那么返回pow(3,n/3)%10000000007
当余数为1时,返回pow(3,n/3-1)*4%100000000007;
当余数为2时,返回pow(3,n/3)*2%100000000007;*/
if(n==0){
return 0;
}
if(n==1){
return 0;
}
if(n==2){
return 1;
}
if(n==3){
return 2;
}
if(n==4){
return 4;
}
int tmp = n%3;
int a = n/3;
if(tmp==0){
return long(mypow(3,a))%1000000007;
}else if(tmp==1){
return long(mypow(3,a-1)*4)%1000000007;
}else if(tmp==2){
return long(mypow(3,a)*2)%1000000007;
}
return 0;
}
};
这里注意不能用pow()函数,因为会越界.