Pytorch:交叉熵损失(CrossEntropyLoss)以及标签平滑(LabelSmoothing)的实现

本文详细介绍了如何在Pytorch中自定义实现交叉熵损失函数CrossEntropyLoss,以及添加标签平滑功能的CrossEntropyLossWithLabelSmoothing。通过代码实例展示了两者的实现过程,并进行了实验验证,比较了标准交叉熵损失与带有标签平滑的损失在不同情况下的输出。标签平滑作为一种正则化手段,有助于防止过拟合并减轻错误标签的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0. 前言

一般情况下我们都是直接调用Pytorch自带的交叉熵损失函数计算loss,但涉及到魔改以及优化时,我们需要自己动手实现loss function,在这个过程中如果能对交叉熵损失的代码实现有一定的了解会帮助我们写出更优美的代码。

其次是标签平滑这个trick通常简单有效,只需要改改损失函数既可带来性能上的提升,通常与交叉熵配合食用。

因此,本文基于这两个出发点,介绍基于Pytorch框架下的交叉熵损失实现以及标签平滑的实现。

1. 浅谈CrossEntropyLoss

相信大家对于如何计算交叉熵已经非常熟悉,常规步骤是①计算softmax得到各类别置信度;②计算交叉熵损失。但其实从Pytorch的官方文档可以看出,还有更一步到位的方法,如下:

这避免了softmax的计算。

代码实现

很简单,根据公式写代码就好了

class CELoss(nn.Module):
    ''' Cross Entropy Loss'''
    def __init__(self):
        super().__init__()

    def forward(self, pred, target):
        ''' 
        Args:
            pred: prediction of model output    [N, M]
            target: ground truth of sampler [N]
        '''
        eps = 1e-12
      	# standard cross entropy loss
        loss = -1.*pred.gather(1, target.unsqueeze(-1)) + torch.log(torch.exp(pred+eps).sum(dim=1))

        return loss.mean()

2. 浅谈Label Smoothing

Label Smoothing也称之为标签平滑,其实是一种防止过拟合的正则化方法。传统的分类loss采用softmax loss,先对全连接层的输出计算softmax,视为各类别的置信度概率,再利用交叉熵计算损失。
在这里插入图片描述
在这里插入图片描述

在这个过程中尽可能使得各样本在正确类别上的输出概率为1,这要使得对应的z值为+∞,这拉大了其与其他类别间的距离。

现在假设一个多分类任务标签是[1,0,0],如果它本身的label的出现了问题,这对模型的伤害是非常大的,因为在训练的过程中强行学习一个非本类的样本,并且让其概率非常高,这会影响对后验概率的估计。并且有时候类与类之间的并不是毫无关联,如果鼓励输出的概率间相差过大,这会导致一定程度上的过拟合。

因此Label Smoothing的想法是让目标不再是one-hot标签,而是变为如下形式:

在这里插入图片描述

其中ε为一个较小的常数,这使得softmax损失中的概率优目标不再为1和0,同时z值的最优解也不再是正无穷大,而是一个具体的数值。这在一定程度上避免了过拟合,也缓解了错误标签带来的影响。

代码实现

基于上一节的交叉熵实现增加标签平滑功能,代码如下:

class CELoss(nn.Module):
    ''' Cross Entropy Loss with label smoothing '''
    def __init__(self, label_smooth=None, class_num=137):
        super().__init__()
        self.label_smooth = label_smooth
        self.class_num = class_num

    def forward(self, pred, target):
        ''' 
        Args:
            pred: prediction of model output    [N, M]
            target: ground truth of sampler [N]
        '''
        eps = 1e-12
        
        if self.label_smooth is not None:
            # cross entropy loss with label smoothing
            logprobs = F.log_softmax(pred, dim=1)	# softmax + log
            target = F.one_hot(target, self.class_num)	# 转换成one-hot
            
            # label smoothing
            # 实现 1
            # target = (1.0-self.label_smooth)*target + self.label_smooth/self.class_num 	
            # 实现 2
            # implement 2
            target = torch.clamp(target.float(), min=self.label_smooth/(self.class_num-1), max=1.0-self.label_smooth)
            loss = -1*torch.sum(target*logprobs, 1)
        
        else:
            # standard cross entropy loss
            loss = -1.*pred.gather(1, target.unsqueeze(-1)) + torch.log(torch.exp(pred+eps).sum(dim=1))

        return loss.mean()

实现1采用了(1.0-self.label_smooth)*target + self.label_smooth/self.class_num实现,与原始公式不太一样。

后续在了解到pytorch的clamp接口后,发现能够利用其能正确实现原公式,见实现2

3. 实验验证

① 交叉熵损失正确率,与标准的交叉熵比较:

	loss1 = nn.CrossEntropyLoss()
    loss2 = CELoss(label_smooth=None, class_num=3)

    x = torch.tensor([[1, 8, 1], [1, 1, 8]], dtype=torch.float)
    y = torch.tensor([1, 2])

    print(loss1(x, y), loss2(x, y))
	# tensor(0.0018) tensor(0.0018)

② 标签平滑结果展示:

	loss1 = nn.CrossEntropyLoss()
    loss2 = CELoss(label_smooth=0.05, class_num=3)

    x = torch.tensor([[1, 8, 1], [1, 1, 8]], dtype=torch.float)
    y = torch.tensor([1, 2])

    print(loss1(x, y), loss2(x, y))
	# tensor(0.0018) tensor(0.2352)

另一组结果:

	x = torch.tensor([[0.1, 8, 0.1], [0.1, 0.1, 8]], dtype=torch.float)
    y = torch.tensor([1, 2])

    print(loss1(x, y), loss2(x, y))
    # tensor(0.0007) tensor(0.2641)

分析:拉大模型输出数值间的差距后,原始的交叉熵会变小,而增加了标签平滑的反而变大。这也反映了标签平滑后,并不是概率越接近于1越好,而是接近某个小于1的值,这使得模型的输出不再是越高(+∞)越好。

### 交叉熵损失概述 #### 定义 交叉熵损失是一种广泛应用于分类问题中的损失函数,在机器学习尤其是深度学习领域非常常见。该损失函数衡量的是模型预测的概率分布与真实标签之间的差异程度。 #### 公式推导 对于二元分类问题,使用的具体形式称为二元交叉熵损失(Binary Cross Entropy Loss, BCELoss),其表达式可以写作: \[ \text{BCE}(y,\hat y)=-(y\log(\hat y)+(1-y)\log(1-\hat y)) \] 这里 \(y\) 表示真实的类别标签(0 或者 1),而 \(\hat y\) 则代表由模型给出的对应类别的概率估计值[^1]。 当扩展到多分类情况时,则采用一般的交叉熵损失(CrossEntropyLoss): \[ H(p,q)=-\sum_{i} p(x_i)\cdot\log(q(x_i)) \] 其中\(p(x_i)\) 是实际发生的事件的真实分布;\(q(x_i)\) 是模型所预测出来的分布[^3]。 #### 计算方法 在实现上,比如 PyTorch 中 `nn.CrossEntropyLoss()` 实际内部集成了两个操作:先执行 LogSoftmax 来获得对数似然比,再应用 NLLLoss(Negative Log Likelihood Loss)来完成最终的损失计算过程。 ```python import torch.nn as nn criterion = nn.CrossEntropyLoss() output = model(input_data) loss = criterion(output, target_labels) ``` 这段代码展示了如何创建一个交叉熵损失实例并用于训练过程中评估模型输出与目标标签间的差距。 #### 应用场景 - **图像识别**:无论是简单的手写数字辨识还是复杂的物体检测任务都可以见到它的身影; - **自然语言处理**:文本分类、情感分析等NLP子域也大量依赖此类损失函数来进行监督学习; - **医疗诊断辅助系统**:帮助提高疾病早期筛查准确性等方面发挥重要作用[^2]。
评论 30
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值