Asa13opp
码龄2年
关注
提问 私信
  • 博客:5,587
    5,587
    总访问量
  • 20
    原创
  • 1,248,856
    排名
  • 6
    粉丝
  • 0
    铁粉

个人简介:小白(literally)

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:安徽省
  • 加入CSDN时间: 2022-09-13
博客简介:

m0_73697075的博客

查看详细资料
个人成就
  • 获得10次点赞
  • 内容获得8次评论
  • 获得23次收藏
  • 代码片获得239次分享
创作历程
  • 21篇
    2023年
成就勋章
TA的专栏
  • [李沐]动手学深度学习
    3篇
  • [土堆]Pytorch笔记
    17篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

186人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【李沐--深度学习笔记】003矩阵计算

① y是向量,x是标量的话,求导为标量。② y是向量,x是向量的话,求导为矩阵。
原创
发布博客 2023.11.08 ·
134 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【李沐--深度学习笔记】002线性代数

① 下图为对矩阵求特征值、求特征向量的相关操作。
原创
发布博客 2023.11.08 ·
189 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

【李沐--深度学习笔记】001数据操作+数据预处理

① 机器学习用的最多的是N维数组,N维数组是机器学习和神经网络的主要数据结构。
原创
发布博客 2023.10.31 ·
161 阅读 ·
0 点赞 ·
2 评论 ·
0 收藏

[土堆]深度学习快速入门教程笔记——利用GPU训练——016

GPU(Graphics Processing Unit,图形处理单元)是一种专门设计用于处理图形和并行计算任务的硬件设备。最初,GPU主要用于图形渲染和游戏应用,但由于其高度并行的计算能力,它们在科学计算、机器学习和深度学习等领域得到了广泛应用。在深度学习中,神经网络的训练通常涉及大量的矩阵运算和张量操作,这些操作可以高度并行化。GPU的并行计算能力远远超过了一般的中央处理单元(CPU),因此,将神经网络的训练任务放在GPU上进行加速可以极大地提高训练速度。
原创
发布博客 2023.10.29 ·
245 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

[土堆]深度学习快速入门教程笔记——神经网络模型训练实战——016

model.eval()是保证BN层能够用全部训练数据的均值和方差,即测试过程中要保证BN层的均值和方差不变。② 如果模型中有BN层(Batch Normalization)和 Dropout,需要在训练时添加model.train()。在model(test)之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。① model.train()和model.eval()的区别主要在于Batch Normalization和Dropout两层。
原创
发布博客 2023.10.29 ·
233 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

[土堆]深度学习快速入门教程笔记——网络模型保存与读取——015

再运行下面的代码,即下面为第1个代码块运行,无法直接导入网络模型。
原创
发布博客 2023.10.28 ·
99 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

[土堆]深度学习快速入门教程笔记——网络模型使用及修改——014

选择合适的卷积层、池化层、全连接层等,构建网络的基本结构。定义网络的层数、每层的节点数、激活函数等,构建完整的网络架构。根据问题类型选择合适的损失函数和优化器。划分训练集、验证集和测试集,使用反向传播算法和优化器训练网络。根据模型性能调整网络架构、损失函数和超参数,以获得更好的结果。
原创
发布博客 2023.10.28 ·
307 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

[土堆]深度学习快速入门教程笔记——损失函数、反向传播与优化器——013

损失函数能够量化模型的预测结果与实际标签之间的误差。通过最小化损失函数,我们可以使得模型的预测结果尽可能接近实际标签,从而提高模型的性能。在训练过程中,优化算法(比如梯度下降)使用损失函数的梯度信息来更新模型参数。通过最小化损失函数,模型可以根据训练数据不断调整自身的参数,使得预测结果更加准确。
原创
发布博客 2023.10.28 ·
233 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

[土堆]深度学习快速入门教程笔记——搭建小实战和Sequential使用——012

在PyTorch中,是一个用于构建神经网络模型的容器。它允许你按照顺序添加神经网络的层,使得创建神经网络模型变得更加简单和直观。你只需要按照顺序将各个层添加到Sequential容器中,然后就可以像使用单个模块一样使用它。使用Sequential的好处在于,它让模型的结构更加清晰,你可以通过简单地添加或删除层来修改模型结构。
原创
发布博客 2023.10.27 ·
120 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

[土堆]深度学习快速入门教程笔记——线性层及其他层——011

神经网络是一种受到人脑神经元结构启发的计算模型,用于机器学习和人工智能任务。它由大量相互连接的人工神经元(也称为节点或神经元)组成,这些神经元按层次排列,分为输入层、隐藏层(可以有多个)和输出层。
原创
发布博客 2023.10.27 ·
1494 阅读 ·
4 点赞 ·
1 评论 ·
10 收藏

[土堆]深度学习快速入门教程笔记——非线性激活——010

如果在神经网络中只使用线性操作(如线性加权和),整个网络就会变成一个大的线性函数,多个线性层的组合依然是一个线性变换。非线性激活函数(例如sigmoid、tanh、ReLU等)引入了非线性关系,允许网络学习和表示非线性的模式,这对于解决复杂任务非常关键。- 作用: 将输入映射到范围(0, 1)之间。在二元分类问题中常用作输出层的激活函数。但它在深层网络中容易引起梯度消失问题,因此在隐藏层中的使用相对较少。
原创
发布博客 2023.10.26 ·
169 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

[土堆]深度学习快速入门教程笔记——池化层——009

当 ceil_mode=True 时,如果滑动窗口在左填充内边距内启动,则允许它们越界或输入。将在右侧填充区域开始的滑动窗口将被忽略。
原创
发布博客 2023.10.26 ·
109 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

[土堆]深度学习快速入门教程笔记——卷积层——008

torch.nn.Conv2dstride1padding0dilation1groups1biasTrue'zeros'deviceNonedtypeNone常用参数:) – 输入图像中的通道数) – 由卷积产生的通道数or) – 卷积核的大小oroptional) – 卷积的步幅 Default: 1oroptional) – 添加到输入四个边的Padding Default: 0optionaloroptionaloptionaloptional。
原创
发布博客 2023.10.25 ·
80 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

[土堆]深度学习快速入门教程笔记——卷积原理——007

卷积核不停的在原图上进行滑动,对应元素相乘再相加。下图为每次滑动移动1格,然后再利用原图与卷积核上的数值进行计算得到缩略图矩阵的数据,如下图右所示。输出结果tensor([[[[10, 12, 12],
原创
发布博客 2023.10.25 ·
127 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

[土堆]深度学习快速入门教程笔记——nn.Module模块使用——006

① 简单理解就是子类把父类的__init__()放到自己的__init__()当中,这样子类就有了父类的__init__()的那些东西。② Myclass类继承nn.Module,super(Myclass, self).__init__()就是对继承自父类nn.Module的属性进行初始化。而且是用nn.Module的初始化方法来初始化继承的属性。③ super().__init()__()来通过初始化父类属性以初始化自身继承了父类的那部分属性;
原创
发布博客 2023.10.24 ·
102 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

[土堆]深度学习快速入门教程笔记——Dataloader使用——005

【代码】[土堆]深度学习快速入门教程笔记——Dataloader使用——005。
原创
发布博客 2023.10.24 ·
111 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

[土堆]深度学习快速入门教程笔记——torchvision数据集使用——004

torchvision中有很多数据集,当我们写代码时指定相应的数据集指定一些参数,它就可以自行下载。CIFAR-10数据集包含60000张32×32的彩色图片,一共10个类别,其中50000张训练图片,10000张测试图片。
原创
发布博客 2023.10.24 ·
101 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

[土堆]深度学习快速入门教程笔记——Transforms使用——003

transforms是Pytorch其中一个模块,它包含了一系列常用的数据转换操作,可以对数据进行缩放、裁剪、旋转、翻转、归一化、变换等处理。transforms的主要作用是为了让数据适合训练神经网络,比如把PIL图像转换为张量,把整数标签转换为one-hot编码,把数据范围调整到[0, 1]或者[-1, 1]等。transforms也可以用来增加数据的多样性和随机性,比如随机裁剪、随机旋转、随机噪声等,这样可以提高模型的泛化能力和鲁棒性。
原创
发布博客 2023.10.22 ·
499 阅读 ·
3 点赞 ·
0 评论 ·
7 收藏

[土堆]深度学习快速入门教程笔记——Tensorboard使用——002

或者做新的训练的时候可以先创建一个子文件:SummaryWriter("新文件夹名")它可以帮助你跟踪和展示训练过程中的指标,如损失和准确率,可视化模型图,查看权重、偏置或其他张量的直方图,将嵌入投影到低维空间,显示图像、文本和音频数据,分析TensorFlow程序的性能,等等​。注:这样得到的图片是格式(H, W, 3),并非默认的(3, H, W), 需要设置dataformats='HWC'将网址赋值浏览器的网址栏,回车,即可查看tensorboard显示日志情况。Tensorboard是一个用于。
原创
发布博客 2023.10.22 ·
158 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

[土堆]深度学习快速入门教程笔记——Pytorch加载数据——001

Dataloader:为后面的网络提供不同的数据形式,它将一批一批数据进行一个打包。
原创
发布博客 2023.10.22 ·
107 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏
加载更多