opencv遍历图像

17 篇文章 0 订阅
 1 void gl(const Mat &image,Mat& result)
 2 {
 3     result.create(image.size(),image.type());
 4     int nr=image.rows;
 5     int nc=image.cols*image.channels();
 6     for(int i=1;i<nr-1;i++)
 7     {
 8         const uchar* up_line=image.ptr<uchar>(i-1);//指向上一行
 9         const uchar* mid_line=image.ptr<uchar>(i);//当前行
10         const uchar* down_line=image.ptr<uchar>(i+1);//下一行
11         uchar* cur_line=result.ptr<uchar>(i);
12         for(int j=1;j<nc-1;j++)
13         {
14             cur_line[j]=saturate_cast<uchar>(5*mid_line[j]-mid_line[j-1]-mid_line[j+1]-
15                 up_line[j]-down_line[j]);
16         }
17     }
19     result.row(0).setTo(Scalar(0));
20     result.row(result.rows-1).setTo(Scalar(0));
21     result.col(0).setTo(Scalar(0));
22     result.col(result.cols-1).setTo(Scalar(0));
23 }
1 void gl(const Mat& image,Mat& outImage,int div)
 2 {
 3     outImage.create(image.size(),image.type());
 4     MatConstIterator_<Vec3b> it_in=image.begin<Vec3b>();
 5     MatConstIterator_<Vec3b> itend_in=image.end<Vec3b>();
 6     MatIterator_<Vec3b> it_out=outImage.begin<Vec3b>();
 7     MatIterator_<Vec3b> itend_out=outImage.end<Vec3b>();
 8     while(it_in!=itend_in)
 9     {
10         (*it_out)[0]=(*it_in)[0]/div*div+div/2;
11         (*it_out)[1]=(*it_in)[1]/div*div+div/2;
12         (*it_out)[2]=(*it_in)[2]/div*div+div/2;
13         it_in++;
14         it_out++;
15     }
16 }
43 void colorReduce7(cv::Mat &image, int div = 64)
144 {
145     int nl = image.rows;
146     int nc = image.cols;
147     
148     //遍历图像的每个像素
149     for(int j=0; j<nl ;++j)
150     {
151         for(int i=0; i<nc; ++i)
152         {
153             image.at<cv::Vec3b>(j,i)[0] = image.at<cv::Vec3b>(j,i)[0]/div*div + div/2;
154             image.at<cv::Vec3b>(j,i)[1] = image.at<cv::Vec3b>(j,i)[1]/div*div + div/2;
155             image.at<cv::Vec3b>(j,i)[2] = image.at<cv::Vec3b>(j,i)[2]/div*div + div/2;
156         }
157     }
158 }



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值