原理
在大多数情况下,光栅与焦距为f的透镜一起使用,如下图。
其中,第0衍射级和第m衍射级之间的间距可以使用三角函数f *tanβ来估计。
一般来说,远场中的衍射图案是通过计算孔径函数的傅里叶变换来估计的。假设A(x,y)是孔径函数,那么衍射图案的振幅分布E(u,v)可以表示为如下形式(即孔径函数的傅里叶变换):
其中,f是透镜焦距,沿x和y方向上的空间频率分别为fx=x/λf、fy=y/λf。
模拟仿真
本文对上述过程进行了仿真,仿真结果如下:
模拟仿真的一维振幅光栅轮廓如下图所示
一维振幅光栅在傅里叶平面上的衍射图案;需要注意,该衍射图案需要放大才能观察到。
程序获取
该仿真程序可通过点击如下链接进行下载:
一维振幅光栅的MATLAB仿真程序
该程序下载即可运行,无任何其他子程序。