基于深度学习的图像分类识别-课程论文(共17页word文档-含python代码)

本文探讨了深度学习在手写字符和CIFAR-10数据集上的应用,重点研究了样本数量、卷积层数对识别精度的影响。实验结果显示,四层卷积网络能实现超过80%的识别率。此外,文章还深入比较了不同学习速率和优化器对模型性能的影响,发现AdamOptimizer配合0.001的学习速率提供了最佳效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要:本文首先简单介绍了深度学习图像识别算法,并复现了LeNet – 5卷积神经网络,对MNIST数据集的手写字体图像的识别。在此基础上,将一个两层的卷积网络用于CIFAR-10数据集的识别。先后研究了训练样本数及卷积层数对识别准确率的影响。其中,当卷积层增加至4层时,识别准确率突破了80%,且呈现出一种明显的上升趋势。最后本文基于4层卷积网络模型,探析了不同学习速率,不同优化器对识别准确率的影响,结果表明,优化器为AdamOptimizer,学习速率设置为0.001,可取的一个较为令人满意的识别结果。

资源下载:

该资源可从以下链接处获取:

https://download.csdn.net/download/qq_36584460/79495163

资源包含以下内容:

基于深度学习的图像分类识别.docx (共17页)
LeNet-5卷积网络.py
四层卷积网络.py

该文档可作为课程大作业/课程论文;毕业论文参考资料来使用。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

简单光学

您的鼓励是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值