【图像拼接】论文精读:Adaptive As-Natural-As-Possible Image Stitching(AANAP)

本文介绍了Adaptive As-Natural-As-Possible (AANAP)图像拼接算法,旨在创建自然且无马赛克的全景图。该方法结合局部单应模型与全局相似变换,通过线性化单应性减少透视扭曲,并使用全局相似变换提升非重叠区域的拼接效果。实验表明,该方法在减少视差和透视失真方面表现出色,提高了图像拼接的自然度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文对应的代码解读:

【图像拼接】源码精读:Adaptive As-Natural-As-Possible Image Stitching(AANAP/ANAP)

论文地址:Adaptive As-Natural-As-Possible Image Stitching

论文题目:自适应尽可能自然的图像拼接

关键词:图像拼接,自然,平滑

看标题知:文章的目的是使拼接的全景图看起来更加自然。


摘要

图像拼接的目标是创建一个看起来自然且没有马赛克的拼接图,但是拼接图往往会由于相机运动,强度改变,光照偏差等因素拼接效果不好。本文提出了一个新颖的拼接方式——对整张图片使用平滑拼接场,从而解释所有的局部变换。计算扭曲是全自动的,局部单应性和全局相似变换相结合。二者都用来估计目标。我们在没有重叠的区域使用线性单应性并慢慢改变它到全局相似性,以此减少了透视变换的损失。这种方式简单被多个图生成,并且自动

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十小大

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值