【图像拼接(Image Stitching)】关于【图像拼接论文源码精读】专栏的相关说明,包含专栏内文章结构说明、源码阅读顺序、培养代码能力、如何创新等。总之,【图像拼接源码】复现看这一篇就够了!

本文是【图像拼接论文源码精读】专栏的说明,包含专栏结构、适用人群和文章内容。通过源码解读、论文结合的方式,深入理解图像拼接算法,适用于图像拼接领域的研究人员和学习者。专栏覆盖matlab、c++、python等多种语言的源码,旨在提升读者的代码能力和科研水平。
摘要由CSDN通过智能技术生成

在这里插入图片描述


前言

本文是【图像拼接论文源码精读】专栏的相关说明,将一些共性的东西在这里做统一说明,就不在每一篇文章中重复了。

  1. 本专栏对应的【图像拼接论文精读】专栏:【图像拼接(Image Stitching)】关于【图像拼接论文精读】专栏的相关说明,包含专栏使用说明、创新思路分享等(不定期更新)。先看该专栏说明,然后进入专栏阅读相关文章,建议同步订阅,同步阅读
  2. 本专栏针对图像拼接领域公布源码的文章进行源码解读,没有源码的文章在有源码的文章全部更新完毕后尝试复现。
  3. 图像拼接论文源码主要有matlab、c++、python/pytorch/tensorflow三种语言,覆盖的知识面特别广,没有统一的语言标准,复现较为麻烦,所以该专栏更新会比较慢,而且可能会比较啰嗦,但我还是力求细致(主要还是催更的太多了,我努努力,更新了群发私信通知大家)。基于传统特征点的方法基本上是matlab和c++语言,基于深度学习的方法则是python/pytorch/tensorflow。即使是在同一个类别下,用tensorflow和用pytorch的源码都千差万别。
  4. 该专栏每一篇文章请配合【原论文】或【论文精读】阅读,即需要论文+源码精读+源码三者齐头并进,不停切换。
  5. 该专栏每一篇文章,重点会用加粗字体,我给予的相关批注讲解会用红色加粗字体,其他相关说明会用绿色加粗字体

专栏简介

图像拼接论文源码精读,包括思路和具体实现细节,实用性强,附有对应的【图像拼接论文精读】专栏,帮助图像拼接领域的科研工作者更好的理解论文源码并复现,论文包括主流的图像拼接算法AutoStitch、APAP、AANAP、SPHP、ELA、SPW、LPC、TFT、GSP、基于拼接缝的算法、基于深度学习的算法UDIS、UDIS++、基于深度单应估计的算法等。在这个专栏中,我们将逐篇深入分析经典和最新的图像拼接论文,揭示背后的技术细节和设计思想。无论你是计算机视觉研究者、工程师还是对图像处理充满好奇心的学习者,这个专栏都将为你提供独特而深刻的见解。

科研是没有捷径的。当你苦苦寻找快速入门图像拼接领域的捷径无果时,你会发现:一行一行读懂论文的源代码永远是最快最有效的入门和提升方式。

本专栏旨在帮助图像拼接领域的科研工作者们,根据源码理解论文中繁杂的公式算法,快速入门图像拼接,一步一步提升科研能力。即使你现在的代码能力比较弱,在跟着本专栏的学习之后,相信你的代码能力将有一个质的飞跃。对于图形学、数学等原理的理解也会更进一步。

注:即使你不做传统方法,做深度学习方法也得跑通传统方法,因为实验部分需要展示对比结果,可以不了解原理但一定要跑通(专栏内文章第一部分就是跑通代码,有的还需要知道怎么改参数,一般是默认参数)。同样的,我们依托最原始的论文资料,读最原始的资料,而其他人的解读都是二手资料,不成体系也不够系统,本专栏可以带你系统地复现图像拼接算法。

编程环境:

  • matlab源码:MATLAB R2018b
  • C++源码:CodeBlocks+相关的依赖库
  • python源码:按论文源码作者提供的requirements在虚拟环境中配置

  • matlab代码选择一个中间版本运行,基本都能跑通,不会有太大的问题,个别有问题的我会在文章中指出。(比如:多线程parpool的写法变化);
  • python源码一般是基于深度学习的,那么还是严格按照原作者提供的依赖配置,否则可能会有相关库版本不兼容的问题。

专栏亮点

1. 我将剖析每一篇论文的源码,解释每个变量、每个函数,细致全面的讲解代码。如果有特殊的语法和函数,我会单独拿出来进行讲解。
2. 与论文中章节、公式相对应的部分,我会重点讲解,帮助你加深理解论文中的算法原理,从而进一步寻找创新点。
3. 源代码会采用模块化进行讲解。以matlab的源码为例,双百分号%%是matlab代码中划分模块的标志,我将按照这样的代码逻辑顺序进行讲解。如果有可以单独运行的模块,我将单独拿出来运行并演示。
4. 创新点分享。如果该文章有潜在的创新或改进的地方,我会在文章末尾部分展示,并尽量实现。
5. 目前还没有非常详细的图像拼接领域的论文源码解读,本专栏将全面细致的解读每一篇图像拼接论文源码,做到全网唯一且全网最好。
6. 除了源码本身,还会有一些单独的可视化等代码,是我自己补充的,用于论文插图或者其他地方。

承蒙大家厚爱,本专栏最高时在CSDN热门专栏排行榜第8名:
请添加图片描述

适用人群

研究图像拼接领域的硕士、博士和其他该领域工作者。帮助你快速上手,入门科研,入门图像拼接,提升代码能力。

如果导师不懂该领域,又放养,你很迷茫,不知道该在哪学习,源码的语言不统一,不知道该学哪个语言,不知道从哪里入手,源码跑不通,复现不出结果,觉得论文中的公式太难了,源码也非常的复杂,变量结构也搞不懂,还要很多的计算机图形学以及数学原理根本搞不懂。

如果你有上述困惑,那么不要怕,不要觉得数学公式像天数,代码跑完一窍不通,就索性不愿意学了。

不要怕,勇敢的面对代码,一行一行读,一点一点查,总会明白和理解。如果你不愿意自己从零开始学,那么正好,这篇专栏就是帮助你理解源码。

可能在你冥思苦想后,还是不理解,没准看看其他人的解读就豁然开朗了。

本专栏还适合,已经在该领域学习一段时间,有一定的基础,但是找不到创新点的同学。图像拼接领域毕竟研究的人少,已经基本饱和了,水论文都不好水,那么本专栏可能会帮助你寻找创新点,并实现它。

文章结构

本专栏中的每一篇文章会按照以下三步结构撰写:

  1. 跑通代码,复现结果
  2. 源码解读,看懂原理
  3. 总结思考,试图创新

下面对每一步进行相关说明。

1. 跑通代码,复现结果

在下载好论文的源码之后,第一件事就是跑通它。

至于如何跑通,没有任何基础,无法应对没见过的报错怎么办呢?

这一步的目的就是细致入微,手把手,一步一步教你如何跑通源码。包括出现的报错如何解决,需要什么文件,如何修改代码。文字+图片或动图、甚至是视频的形式,保姆级教你跑通代码。如果有需要补全的地方我会补全,例如可视化、评价指标等。

为什么一定要跑通代码?因为需要得到拼接结果。用于写论文中的实验部分,可以作为对比方法的拼接结果;用于PPT汇报;用于其他需要拼接结果的地方。

注:如果你只需要该论文的拼接结果用于论文中实验部分的结果对比,那么你只需要看到这一步即可。

2. 源码解读,看懂原理

  • 模块化讲解,按照源码主函数的顺序;
  • 代码的语法,函数讲解(matlab、c++、python等);
  • 与论文中对应的章节和公式理解,用代码理解算法原理;
  • 其他变量流,附加功能,相关知识等实现原理;
  • 有的模块或函数会单独拿出来讲解和演示。
  • 注:一些通用的模块有的文章讲过了则会略过,但会给出讲解的文章链接。比如SIFT和RANSAC在一些论文源码中都是一模一样的,则只会讲一遍。

3. 总结思考,试图创新

  • 总结代码关键点,需要熟练掌握的部分或模块;
  • 我自己研究的潜在创新点分享给大家,改一些内容看看效果;
  • 添加一些没有的东西,比如论文中需要展示的可视化内容等;
  • 注:不一定有创新,但是有潜在的创新方向一定会写。

说明:【图像拼接论文源码精读】专栏中的文章更新完毕后,【图像拼接论文精读】专栏中对应的文章会同步更新。因为之前论文精读写的比较粗略,通过代码精读后,论文精读则会更新更多笔者自己的理解感悟,做到两边同步优化。

【图像拼接论文源码精读】专栏文章目录

  1. 【源码精读】As-Projective-As-Possible Image Stitching with Moving DLT(APAP)第一部分:全局单应Global homography
  2. 【图像拼接】源码精读:As-Projective-As-Possible Image Stitching with Moving DLT(APAP)第二部分:mdlt
  3. 【图像拼接】源码精读:Adaptive As-Natural-As-Possible Image Stitching(AANAP/ANAP)
  4. 【图像拼接】源码精读:Single-Perspective Warps in Natural Image Stitching(SPW)
  5. 【图像拼接】Leveraging Line-point Consistence to Preserve Structures for Wide Parallax Image Stitching(LPC
  6. 【图像拼接】源码精读:Parallax-Tolerant Image Stitching Based on Robust Elastic Warping(ELA/REW)
  7. 【图像拼接】源码精读:Perception-based seam cutting for image stitching
  8. 【图像拼接】源码精读:Quality evaluation-based iterative seam estimation for image stitching
  9. 【图像拼接】源码精读:Seam-guided local alignment and stitching for large parallax images
  10. 【图像拼接】源码精读:Parallax-Tolerant Unsupervised Deep Image Stitching(UDIS++)

没有硬件条件,需要云服务的同学可以扫码看看:
请添加图片描述

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十小大

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值