【图像去噪】论文复现:无偏置在超大噪声下也能有效去噪!DRUNet的Pytorch源码复现,跑通DRUNet源码,得到去噪结果和评价指标,可作为实验中的对比方法,源码结构梳理,注释清晰,单卡可运行!

请先看【专栏介绍文章】:【图像去噪(Image Denoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)

完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!

本文亮点:

  • 跑通DRUNet源码,获得测试集上平均PSNR/SSIM以及DRUNet去噪结果,可作为实验中的对比方法;
  • DRUNet网络结构与代码实现对应,注释清晰;
  • Windows和Linux单卡可进行推理测试;


前言

论文题目:Plug-and-Play Image Restoration with Deep Denoiser Prior —— 基于深度去噪先验的即插即用图像恢复

论文地址:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十小大

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值