Plug-and-Play Image Restoration with Deep Denoiser Prior
基于深度去噪先验的即插即用图像恢复
DOI:10.1109/TPAMI.2021.3088914
Key words:Denoiser Prior, Image Restoration, Convolutional Neural Network, Half Quadratic Splitting, Plug-and-Play 先验去噪,图像恢复,卷积神经网络,半二次分裂,即插即用
图像恢复(IR):从退化图像中恢复潜在性的清晰图像
传统IR——一致性运算
图像去模糊deblurring——二维卷积
图像超分辨率——卷积和下采样相结合
彩色图像恢复——彩色滤光片阵列掩模
IR需要prior(也可以称作正则化regularization)来约束解空间以防止过拟合、提高泛化能力。
基于模型的IR方法model-based method:
优:与噪声退化操作的函数T(x)简单;可以通过简单的指定来灵活地处理各种IR任务;直接在退化图像上进行优化
缺:因为需要复杂的先验,恢复图像耗时长
基于深度学习的IR方法learning-based method——在包含的训练集上对损失函数进行优化
优:图像恢复耗时短;得益于端到端训练,有更好的优化结果
缺:需要繁琐的预训练,并且会受到特定任务的限制
*DPIR(Deep Plug-and-Play Image Restoration):
综合以上两种方法的特点构造DPIR方法,以model为基础,再用基于learning method的CNN去噪先验代替基于model method优化的去噪子问题。
主要构想:第一步,借助变量分裂算法,将目标函数进行解耦分离出数据项和先验项,得到一个由交替求解数据子问题和先验子问题组成的迭代方案。第二步,通过deep CNN denioser分别处理数据子问题和先验子问题。
FFDNet——Fast and Flexible Solution for CNN based Image Denoising
FFDNet使用噪声估计图作为输入,权衡对均布噪声的抑制和细节的保持,从而应对更加复杂的真实场景。
- 将噪声水平估计作为网络的输入,可以应对更加复杂的噪声,如不同噪声水平噪声和空间变化噪声,而