文献阅读笔记——《Plug-and-Play Image Restoration with Deep Denoiser Prior》

Plug-and-Play Image Restoration with Deep Denoiser Prior

基于深度去噪先验的即插即用图像恢复

DOI:10.1109/TPAMI.2021.3088914

Key words:Denoiser Prior, Image Restoration, Convolutional Neural Network, Half Quadratic Splitting, Plug-and-Play    先验去噪,图像恢复,卷积神经网络,半二次分裂,即插即用

图像恢复(IR):从退化图像中恢复潜在性的清晰图像

传统IR——一致性运算

图像去模糊deblurring——二维卷积

图像超分辨率——卷积和下采样相结合

彩色图像恢复——彩色滤光片阵列掩模

IR需要prior(也可以称作正则化regularization)来约束解空间以防止过拟合、提高泛化能力。

基于模型的IR方法model-based method

优:与噪声退化操作的函数T(x)简单;可以通过简单的指定来灵活地处理各种IR任务;直接在退化图像上进行优化    

缺:因为需要复杂的先验,恢复图像耗时长

基于深度学习的IR方法learning-based method——在包含的训练集上对损失函数进行优化

优:图像恢复耗时短;得益于端到端训练,有更好的优化结果

缺:需要繁琐的预训练,并且会受到特定任务的限制

*DPIR(Deep Plug-and-Play Image Restoration)

综合以上两种方法的特点构造DPIR方法,以model为基础,再用基于learning method的CNN去噪先验代替基于model method优化的去噪子问题。

主要构想:第一步,借助变量分裂算法,将目标函数进行解耦分离出数据项和先验项,得到一个由交替求解数据子问题和先验子问题组成的迭代方案。第二步,通过deep CNN denioser分别处理数据子问题和先验子问题。

FFDNet——Fast and Flexible Solution for CNN based Image Denoising

FFDNet使用噪声估计图作为输入,权衡对均布噪声的抑制和细节的保持,从而应对更加复杂的真实场景。

  1. 将噪声水平估计作为网络的输入,可以应对更加复杂的噪声,如不同噪声水平噪声和空间变化噪声,而
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值