Tensorflow学习之tf.app.flags

tf.app.flags主要用于处理命令行参数的传递工作

通过tf.app.flags来调用这个flags.py文件,这样我们就可以用flags.DEFINE_interger/float()来添加命令行参数,而FLAGS=flags.FLAGS可以实例化这个解析参数的类从对应的命令行参数取出参数。

import tensorflow as tf  

flags = tf.app.flags
flags.DEFINE_string('data_dir', '/tmp/mnist', 'Directory with the MNIST data.')
flags.DEFINE_integer('batch_size', 5, 'Batch size.')
flags.DEFINE_integer('num_evals', 1000, 'Number of batches to evaluate.')
FLAGS = flags.FLAGS

print(FLAGS.data_dir, FLAGS.batch_size, FLAGS.num_evals)
  • 在命令行中输入test.py -h就可以查看帮助信息,也就是Directory with the MNIST data.,Batch size和Number of batches to evaluate这样的消息。
  • 在命令行中输入test.py --batchsize 10就可以将batch_size的值修改为10!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值