DeepSeek-R1的创新之 GRPO(Group Relative Policy Optimization) 介绍

目录

一、引言

二、核心原理

(一)组内优势估计

(二)直接 KL 散度优化

(三)动态梯度正则化

三、算法流程

四、技术优势

(一)计算高效性

(二)训练稳定性

(三)泛化能力强

五、应用场景

(一)数学推理任务

(二)代码生成任务

(三)对话系统

(四)定理证明任务

六、在实际项目中的应用步骤

(一)明确项目目标与任务

(二)数据准备

(三)构建奖励模型

(四)选择与配置模型

(五)训练与优化

(六)模型评估与部署

七、与 PPO 的对比

八、结论


一、引言

在大型语言模型(LLMs)的训练与优化中,强化学习起着关键作用。传统的近端策略优化(PPO)算法虽被广泛应用,但随着模型规模扩大和任务复杂度增加,其内存开销大、计算成本高的局限性日益凸显。Group Relative Policy Optimization(GRPO)作为一种新兴的强化学习算法,旨在克服 PPO 的这些不足,为 LLMs 的训练带来更高的效率与稳定性。

分享一个免费无限次白嫖满血版DeepSeek-R1的隐藏入口,带联网搜索、图片文档对话,实测下来竟然比DeepSeek官网还牛逼: https://dazi.co/login?i=115dcbd7

二、核心原理

(一)组内优势估计

GRPO 摒弃了传统强化学习中依赖单独价值函数模型来估计优势的做法。对于每个输入,模型会生成一组输出。以这组输出的平均奖励作为基线,通过计算每个输出奖励与平均奖励的差异,得到每个输出的相对优势。例如,在处理数学问题时,针对同一数学题目生成多个解答,计算这些解答的平均得分,再对比每个解答的得分与平均分的差值,确定其相对优势。这种方式简化了优势估计过程,减少了对额外模型的依赖,降低了内存占用和计算成本。

(二)直接 KL 散度优化

GRPO 将 KL 散度直接集成到损失函数中。KL 散度用于衡量当前策略与参考策略(通常是监督微调后的模型策略)之间的差异。在更新策略时,通过控制 KL 散度,限制策略更新的幅度,避免策略发生剧烈变化,从而保持训练过程的稳定性。这使得模型在学习新策略的同时,不会偏离初始的良好策略太远,确保训练朝着期望的方向进行。

(三)动态梯度正则化

在训练过程中,通过动态调整梯度正则化项,根据训练的进展和模型的状态,自适应地约束策略更新的幅度。这有助于解决大规模模型训练中可能出现的数值不稳定问题,保证训练过程的平稳性,使模型能够更有效地学习到最优策略。

三、算法流程

       1.采样阶段:给定输入,模型依据当前策略生成一组具有多样性的输出。这些输出涵盖了模型在当前状态下对输入的不同理解和处理方式,为后续的评估和优化提供基础。

       2.奖励评分:利用奖励模型对每个输出进行评分。奖励模型基于特定的任务标准和评估指标,如回答的准确性、完整性、逻辑性等,为每个输出赋予一个奖励值,以量化其质量。

       3.优势计算:计算组内输出的平均奖励,并以此作为基线。将每个输出的奖励减去平均奖励,再除以组内奖励的标准差,实现归一化处理,得到每个输出的相对优势。

        4.策略优化:根据计算得到的相对优势,使用梯度下降等优化方法更新策略模型的参数。对于具有正相对优势的输出,增加其在未来生成中的概率;对于负相对优势的输出,则降低其生成概率。同时,通过 KL 散度项约束策略更新,确保策略在探索新方向的同时保持稳定性。

        5.迭代优化:不断重复上述步骤,随着训练的进行,模型的策略逐渐优化,生成的输出质量不断提高。

四、技术优势

(一)计算高效性

GRPO 无需维护与策略模型大小相当的价值网络,大大降低了训练过程中的内存占用。在计算优势时,基于组内平均奖励的方式简化了计算流程,减少了计算量,提高了训练效率,尤其适用于大规模语言模型的微调。

(二)训练稳定性

组内优势估计减少了策略更新的方差,使得策略更新更加平稳。KL 散度的直接集成和动态梯度正则化进一步约束了策略更新的幅度,防止模型在训练过程中出现不稳定的情况,降低了训练中断的风险,提高了训练的成功率和稳定性。

(三)泛化能力强

以组为单位进行相对评估,使得模型能够更好地捕捉不同任务之间的共性和差异。在多样化的任务场景中,GRPO 能够更有效地学习到通用的策略,提升模型在各种实际应用中的性能,表现出更好的泛化能力。

五、应用场景

(一)数学推理任务

在数学问题求解中,GRPO 可有效提升模型的推理能力。例如 DeepSeek Math 应用 GRPO 后,在 GSM8K 等数学数据集上的得分显著提高,能够更准确地解决复杂的数学问题,包括代数、几何、逻辑推理等多种类型的数学题目。

(二)代码生成任务

在代码生成方面,GRPO 可以优化代码生成模型。通过对生成的代码片段进行组内相对评估和策略更新,使模型生成的代码更符合语法规范、功能需求,提高代码的可运行率和质量,适用于各种编程语言的代码生成任务。

(三)对话系统

在对话系统中,GRPO 可使系统针对用户输入生成多个候选回答,并通过评估和优化选择最合适的回答。这有助于提升对话的流畅性、相关性和实用性,增强用户体验,适用于智能客服、聊天机器人等多种对话应用场景。

(四)定理证明任务

在定理证明领域,GRPO 有助于优化定理证明模型的策略。通过对生成的定理证明步骤进行组内相对评估和策略更新,帮助模型更高效地找到正确的证明路径,提高定理证明的成功率,对于数学、逻辑等领域的定理证明任务具有重要应用价值。

六、在实际项目中的应用步骤

(一)明确项目目标与任务

  1. 定义任务:清晰界定项目要解决的具体问题,例如是开发一个智能客服系统,还是实现自动代码生成功能等。不同的任务会有不同的输入输出要求和评估标准。
  1. 确定目标:设定可衡量的目标,如智能客服系统的用户满意度提升到一定比例,或者代码生成的准确率达到某个数值等。这些目标将指导后续的奖励模型设计和算法评估。

(二)数据准备

  1. 收集数据:根据项目任务,收集相关的训练数据。例如在数学推理项目中,收集各类数学题目及其答案;在代码生成项目中,收集高质量的代码片段。数据应具有代表性,能够覆盖项目可能遇到的各种情况。
  1. 预处理数据:对收集到的数据进行清洗、标注和格式化处理。清洗掉数据中的噪声和错误信息,标注数据以满足模型训练的需求,如为数学题目标注难度等级,为代码片段标注功能描述等。

(三)构建奖励模型

  1. 确定评估指标:根据项目目标和任务,确定用于评估模型输出的指标。如在对话系统中,评估指标可以包括回答的相关性、完整性、礼貌性等;在代码生成中,指标可以是代码的正确性、可读性、执行效率等。 
  2. 设计奖励函数:将评估指标转化为具体的奖励函数,该函数根据模型输出与期望输出的差异,为每个输出分配奖励值。奖励函数的设计要合理,能够准确反映模型输出的质量,引导模型朝着正确的方向优化。

(四)选择与配置模型

  1. 选择基础模型:根据项目需求和资源情况,选择合适的预训练语言模型作为基础。例如 GPT 系列、BERT 等,这些模型在大规模语料上进行了预训练,具有较强的语言理解和生成能力。 
  2. 配置模型参数:针对 GRPO 算法,配置合适的超参数,如采样组的大小、KL 散度的约束系数、梯度正则化的参数等。这些参数的选择会影响算法的性能和收敛速度,需要通过实验进行调优。

(五)训练与优化

  1. 实施 GRPO 算法:按照 GRPO 的算法流程,进行模型的训练。在训练过程中,不断生成输出组,计算相对优势,更新策略模型参数,并通过 KL 散度约束保证策略的稳定性。 
  2. 监控与调优:实时监控训练过程中的指标,如损失函数值、奖励值、模型准确率等。根据监控结果,调整超参数或优化奖励模型,以提高模型的性能。

(六)模型评估与部署

  1. 评估模型性能:使用独立的测试数据集对训练好的模型进行评估,验证模型是否达到了项目设定的目标。评估指标应与项目目标一致,如智能客服系统的用户满意度调查、代码生成的准确率测试等。 
  2. 部署与上线:将评估合格的模型部署到实际的生产环境中,与其他系统进行集成,为用户提供服务。在部署后,持续收集用户反馈,对模型进行进一步的优化和改进。

七、与 PPO 的对比

对比项

PPO

GRPO

价值网络

依赖单独的价值函数模型来估计优势,内存占用大

摒弃价值函数模型,通过组内优势估计简化计算,降低内存需求

奖励计算

使用广义优势估计计算优势函数

基于组内平均奖励计算相对优势,方法更简洁

策略更新

通过裁剪概率比限制策略更新幅度

引入 KL 散度直接约束策略更新,控制更精细

训练稳定性

在大规模模型训练中可能出现不稳定情况

组内优势估计和 KL 散度集成使训练更稳定

计算效率

计算成本较高

计算效率高,内存占用少

八、结论

Group Relative Policy Optimization(GRPO)作为一种创新的强化学习算法,在解决大型语言模型训练中的效率和稳定性问题上展现出显著优势。通过独特的组内优势估计、直接 KL 散度优化和动态梯度正则化等技术,GRPO 在计算效率、训练稳定性和泛化能力等方面优于传统的 PPO 算法。在数学推理、代码生成、对话系统、定理证明等多个领域的应用中,GRPO 都取得了良好的效果,为推动语言模型在复杂任务中的应用和发展提供了有力支持。随着研究的不断深入和技术的进一步发展,GRPO 有望在更多领域得到应用和拓展,为人工智能的发展做出更大贡献。在实际项目中应用 GRPO 算法,需要从明确目标任务、数据准备、奖励模型构建、模型选择配置、训练优化到评估部署等多个环节精心设计和实施,以充分发挥其优势,实现项目的成功落地。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI仙人掌

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值