DeepSeek-R1-Zero 与 DeepSeek-R1 的异同与优劣分析

DeepSeek-R1-Zero 与 DeepSeek-R1 的异同与优劣分析


一、相同点
  1. 核心训练方法

    • 两者均基于强化学习(RL),采用 Group Relative Policy Optimization(GRPO) 算法,通过组内样本的奖励对比较优化策略模型

    • 目标均为提升语言模型的复杂推理能力(如数学、代码、科学推理)。

  2. 基础模型

    • 均以 DeepSeek-V3-Base 作为初始模型,共享相同的架构

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值